版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省湛江市大成中学数学高二上期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为抛物线焦点,直线,点为上任意一点,过点作于,则()A.3 B.4C.2 D.不能确定2.过点作圆的切线,则切线的方程为()A. B.C.或 D.或3.已知数列通项公式,则()A.6 B.13C.21 D.314.已知函数满足对于恒成立,设则下列不等关系正确是()A. B.C. D.5.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.6.直线与圆相切,则实数等于()A.或 B.或C.3或5 D.5或37.已知集合,集合或,是实数集,则()A. B.C. D.8.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里9.为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排方案共有()A.10种 B.12种C.16种 D.24种10.如图,奥运五环由5个奥林匹克环套接组成,环从左到右互相套接,上面是蓝、黑、红环,下面是黄,绿环,整个造形为一个底部小的规则梯形.为迎接北京冬奥会召开,某机构定制一批奥运五环旗,已知该五环旗的5个奥林匹克环的内圈半径为1,外圈半径为1.2,相邻圆环圆心水平距离为2.6,两排圆环圆心垂直距离为1.1,则相邻两个相交的圆的圆心之间的距离为()A. B.2.8C. D.2.911.曲线在点处的切线方程为()A. B.C. D.12.若向量,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线:,过焦点作倾斜角为的直线与交于,两点,,在的准线上的投影分别为,两点,则__________.14.若,是双曲线与椭圆的共同焦点,点P是两曲线的一个交点,且为等腰三角形,则该双曲线的渐近线为______15.若函数解析式,则使得成立的的取值范围是___________.16.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若你随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正四棱锥中,为底面中心,,为中点,(1)求证:平面;(2)求:(ⅰ)直线到平面的距离;(ⅱ)求直线与平面所成角的正弦值18.(12分)已知等差数列的前三项依次为,4,,前项和为,且.(1)求的通项公式及的值;(2)设数列的通项,求证是等比数列,并求的前项和.19.(12分)已知直线l:x-y+2=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切(1)求该圆的方程;(2)若直线x+my-1=0与圆C交于A、B两点,且|AB|=,求m的值20.(12分)已知双曲线的左、右焦点分别为,,动点M满足(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点,且,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点21.(12分)在四棱锥中,平面,,,,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值.22.(10分)如图,已知平面,底面为正方形,,分别为的中点(1)求证:平面;(2)求与平面所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由抛物线方程求出准线方程,由题意可得,由抛物线的定义可得,即可求解.【详解】由可得,准线为,设,由抛物线的定义可得,因为过点作于,可得,所以,故选:A.2、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C3、C【解析】令即得解.【详解】解:令得.故选:C4、A【解析】由条件可得函数为上的增函数,构造函数,利用函数单调性比较的大小,再根据函数的单调性确定各选项的对错.【详解】设,则,∵,∴,∴函数在上为增函数,∵,∴,故,所以,C错,令(),则,当时,,当时,∴函数在区间上为增函数,在区间上为减函数,又,∴,∴,即,∴,故,所以,D错,,故,所以,A对,,故,所以,B错,故选:A.5、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A6、C【解析】先求出圆的圆心和半径,再利用圆心到直线的距离等于半径列方程可求得结果【详解】由,得,则圆心为,半径为2,因为直线与圆相切,所以,得,解得或,故选:C7、A【解析】先化简集合,再由集合的交集、补集运算求解即可【详解】,或,故故选:A8、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.9、A【解析】对中心组学习所在的阶段分两种情况讨论得解.【详解】解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活动有1种方法,则此时共有种方法;如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有种方法.综合得不同的安排方案共有10种.故选:A10、C【解析】根据题意作出辅助线直接求解即可.【详解】如图所示,由题意可知,在中,取的中点,连接,所以,,又因为,所以,所以即相邻两个相交的圆的圆心之间的距离为.故选:C11、A【解析】利用切点和斜率求得切线方程.【详解】由,有曲线在点处的切线方程为,整理为故选:A12、D【解析】由向量数量积的坐标运算求得数量积,模,结合向量的共线定义判断【详解】由已知,,,与不垂直,若,则,,但是,,因此与不共线故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,则,将直线方程与抛物线方程联立,结合韦达定理即得.【详解】由抛物线:可知则焦点坐标为,∴过焦点且斜率为的直线方程为,化简可得,设,则,由可得,所以则故答案为:14、【解析】根据给定条件求出两曲线的共同焦点,再由椭圆、双曲线定义求出a,b即可计算作答.【详解】椭圆的焦点,由椭圆、双曲线的对称性不妨令点P在第一象限,因为等腰三角形,由椭圆的定义知:,则,,由双曲线定义知:,即,,,所以双曲线的渐近线为:.故答案为:【点睛】易错点睛:双曲线(a>0,b>0)渐近线方程为,而双曲线(a>0,b>0)的渐近线方程为(即),应注意其区别与联系.15、【解析】由题意先判断函数为偶函数,再利用的导函数判断在上单调递增,根据偶函数的对称性得上单调递减.要使成立,即,解不等式即可得到答案.【详解】,,为偶函数,当时,,故函数在上单调递增.为偶函数,在上单调递减.要使成立,即.故答案为:.16、【解析】分别求出圆和正方形的面积,结合几何概型的面积型计算公式进行求解即可.【详解】因为铜钱的面积为,正方形孔的面积为,所以随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是.故答案为:【点睛】本题考查了几何概型计算公式,考查了数学运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)(i);(ii).【解析】(1)连接,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可证得结论成立;(2)(i)利用空间向量法可求得直线到平面的距离;(ii)利用空间向量法可求得直线与平面所成角的正弦值.【小问1详解】证明:连接,则为的中点,且,在正四棱锥中,平面,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示空间直角坐标系,则、、、、、、、,,设平面的法向量为,,,则,取,则,因为,则,又因为平面,所以,平面.【小问2详解】解:(i),所以,直线到平面的距离为.(ii),则,因此,直线与平面所成角的正弦值为.18、(1),(2)证明见解析,【解析】(1)直接利用等差中项的应用求出的值,进一步求出数列的通项公式和的值;(2)利用等比数列的定义即可证明数列为等比数列,进一步求出数列的和.【小问1详解】等差数列的前三项依次为,4,,∴,解得;故首项为2,公差为2,故,前项和为,且,整理得,解得或-11(负值舍去).∴,k=10.【小问2详解】由(1)得:,故(常数),故数列是等比数列;∴.19、(1)(2)0【解析】(1)设出圆心坐标,利用题干条件得到方程,求出,从而求出该圆的方程;(2)利用点到直线距离公式及垂径定理进行求解.【小问1详解】设圆心为,,则由题意得:,解得:或(舍去),故该圆的方程为【小问2详解】圆心到直线的距离为,由垂径定理得:,解得:20、(1)(2)证明见解析【解析】(1)根据双曲线的定义求得的值得双曲线方程;(2)确定垂直于轴,设直线BP的方程为,设,,则,直线方程代入双曲线方程,由相交求得范围,由韦达定理,利用N、B、Q三点共线,且NQ斜率存在,由斜率相等得出的关系,代入韦达定理的结论可求得的值,从而得直线BP所过定点【小问1详解】因为,所以,动点M的轨迹是以点、为左、右焦点的双曲线的左支,则,可得,,所以,点M的轨迹方程为;【小问2详解】证明:∵,∴直线PQ垂直于x轴,易知,直线BP的斜率存在且不为0,设直线BP的方程为,设,,则,联立,化简得:,直线与双曲线左支、右支各有一个交点,需满足或,∴,,又,又N、B、Q三点共线,且NQ斜率存在,∴,即,∴,∴,∴,化简得:,∴,∴,即,满足判别式大于0,即直线BP方程为,所以直线BP过定点21、(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据给定条件证得即可推理作答.(2)由已知条件,以点A作原点建立空间直角坐标系,借助空间位置关系的向量证明即可作答.(3)利用(2)中信息,借助空间向量求直线与平面所成角的正弦值.【小问1详解】在四棱锥中,因分别是的中点,则,因平面,平面,所以平面.【小问2详解】在四棱锥中,平面,,以点A为原点,射线AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024不为人知的装修合同陷阱
- 2024年腈纶扁平丝项目成效分析报告
- 2024年血液净化产品项目综合评估报告
- 2024至2030年中国金银制品数据监测研究报告
- 2024年轧制、锻造钢坯项目综合评估报告
- 2024至2030年中国碳弧气刨数据监测研究报告
- 2024至2030年中国电动车塑料工具箱数据监测研究报告
- 2024至2030年中国气扳数据监测研究报告
- 2024至2030年中国提升机盘形闸故障及状态检测仪行业投资前景及策略咨询研究报告
- 2024至2030年中国天然贴面板数据监测研究报告
- 中医操作评分表
- 冯晓霞教授的《幼儿学习品质观察评定表》
- 手工焊接作业指导书
- 拱桥悬链线计算表
- 半年分析----住院超过30天患者原因分析及改进措施
- 无公害农产品查询
- 国家公派出国留学经验交流PPT课件
- 研究生课程应用电化学(课堂PPT)
- 六宫数独可直接打印共192题
- 班会:如何克服浮躁心理PPT优秀课件
- Monsters歌词下载,Monsters原唱歌词中文翻译,Monsters简谱KatieSky
评论
0/150
提交评论