




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3.1《导数在研究
函数中的应用-单调性》
函数的单调性与导数oyxyox1oyx1在(-∞,0)和(0,+∞)上分别是减函数。但在定义域上不是减函数。在(-∞,1)上是减函数,在(1,+∞)上是增函数。在(-∞,+∞)上是增函数概念回顾画出下列函数的图像,并根据图像指出每个函数的单调区间定理:一般地,函数y=f(x)在某个区间内可导:如果恒有f′(x)>0,则f(x)是增函数。如果恒有f′(x)<0,则f(x)是减函数。如果恒有f′(x)=0,则f(x)是常数。例1.确定函数在哪个区间是减函数?在哪个区间上是增函数?2xyo解:(1)求函数的定义域函数f(x)的定义域是(-∞,+∞)(2)求函数的导数
(3)令以及求自变量x的取值范围,也即函数的单调区间。令2x-4>0,解得x>2∴x∈(2,+∞)时,是增函数令2x-4<0,解得x<2∴x∈(-∞,2)时,是减函数
确定函数,在哪个区间是增函数,那个区间是减函数。xyo解:函数f(x)的定义域是(-∞,+∞)
令6x2-12x>0,解得x>2或x<0∴当x∈(2,+∞)时,f(x)是增函数;当x∈(-∞,0)时,f(x)也是增函数令6x2-12x<0,解得,0<x<2∴当x∈(0,2)时,f(x)是减函数。首页知识点:定理:一般地,函数y=f(x)在某个区间内可导:如果恒有
,则f(x)在是增函数。如果恒有
,则f(x)是减函数。如果恒有
,则f(x)是常数。步骤:(1)求函数的定义域(2)求函数的导数(3)令f’(x)>0以及f’(x)<0,求自变量x的取值范围,即函数的单调区间。f’(x)>0f’(x)<0f’(x)=0练习:判断下列函数的单调性(1)f(x)=x3+3x;(2)f(x)=sinx+x,x∈(0,2π);(3)f(x)=2x3+3x2-24x+1;(4)f(x)=ex-x;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年河南省事业单位招聘考试真题
- 岗位职责学校培训
- 2025-2030中国小型粉碎机行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国小儿痉挛治疗行业市场发展趋势与前景展望战略研究报告
- 经济电视节目制作服务企业制定与实施新质生产力战略研究报告
- 智慧商圈行业直播电商战略研究报告
- 专供游戏用家具式桌子行业跨境出海战略研究报告
- 2025-2030中国室外地坪漆行业发展分析及发展趋势预测与投资风险研究报告
- 2025-2030中国宠物补钙行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国宠物寄存处行业发展分析及投资风险与战略研究报告
- 无损检测超声波检测课件
- 一、长方体和正方体表面涂色的
- 人教版英语七年级上册《Unit7HowmucharethesesocksSectionB》教学设计
- 生产中断影响及生产组织管理考核办法
- 思普产品介绍ppt课件
- 企业部门单位工伤事故报告书
- 煤炭工业露天矿设计规范(WORD格式)
- 8251芯片(课堂PPT)
- 人教版中考英语高频词汇汇总
- DriveMonitor使用简介
- 苏州市优质结构评选办法
评论
0/150
提交评论