




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等腰三角形的判定一、复习:1、等腰三角形的性质定理是什么?性质1
:
等腰三角形的两个底角相等
(简称“等边对等角”,前提是在同一个三角形中。)
性质2
:
等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
(简称“三线合一”,前提是在同一个等腰三角形中。)
题设:一个三角形有两个角相等.结论:这两个角所对的边相等.思考:这个命题的题设和结论又分别是什么呢?如何证明这个命题?猜想两个角相等的三角形是等腰三角形已知:△ABC中,∠B=∠C求证:AB=AC证明:作∠BAC的平分线AD在△
BAD和△
CAD中,∠1=∠2,∠B=∠C,AD=AD∴△BAD≌△CAD(AAS)∴AB=AC(全等三角形的对应边相等)1ABCD2等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).注意:使用“等边对等角”前提是---在同一个三角形中例1求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。ABCDE12已知:如图,∠CAE是△
ABC的外角,∠1=∠2,
AD∥BC。求证:AB=AC分析:从求证看:要证AB=AC,需证∠B=∠C,从已知看:因为∠1=∠2,AD∥BC可以找出∠B,∠C与的关系。证明:∵AD∥BC,ABCDE12∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等)。∵∠1=∠2,∴∠B=∠C,∴AB=AC(等边对等角)。DC巩固等腰三角形的判定定理例2
已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.作法:(1)作线段AB=a;(2)作线段AB的垂直平分线MN,与AB相交于点D;(3)在MN上取一点C,使DC=h;(4)连接AC,BC,则△ABC就是所求作的等腰三角形.ABMN练习2CBAD12已知:如图,∠A=∠DBC=360,∠C=720。计算∠1和∠2,并说明图中有哪些等腰三角形?∠1=720∠2=360等腰三角形有:△ABC,△
ABD,△
BCD练习32.如图,把一张矩形的纸沿对角线折叠.重合部分是一个等腰三角形吗?为什么?解答答案:是等腰三角形.因为,如图可证∠1=∠2.练习4如图,AC和BD相交于点O,且AB∥DC,OA=OB,求证:OC=OD.
证明:∵OA=OB,
∴∠A=∠B.(等边对等角)又∵AB∥DC,
∴∠A=∠C,∠B=∠D.(两直线平行,内错角相等)
∴∠C=∠D(等量代换)∴OC=OD(等角对等边)
2、等腰三角形的判定方法有下列几种:。3、等腰三角形的判定定理与性质定理的区别是
。4、运用等腰三角形的判定定理时,应注意
。1、等腰三角形的判定定理的内容是什么?小结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 助动车维修技术交流考核试卷
- 机器视觉与图像处理技术考核试卷
- 智能仪器仪表项目规划考核试卷
- 医用针灸贴的种类和使用建议考核试卷
- 供应链数字化转型案例与启示考核试卷
- 木纹设计与加工考核试卷
- 苗圃白蚁防治合同范本
- 留置权合同范本
- 业扩报装培训课件
- 8.3 摩擦力(共28张) 2024-2025学年人教版物理八年级下册
- 《完善中国特色社会主义法治体系》课件
- 2025版 高考试题分析-数学-部分4
- 湘教版三年级美术下册教案全册
- 重症监护-ICU的设置、管理与常用监测技术
- 2024版高一上册语文模拟试卷
- 法律顾问服务投标方案(完整技术标)
- 知道网课智慧树《哲学导论(湖南师范大学)》章节测试答案
- 防止员工集体离职合同
- 加油站合作协议书
- 福建省厦门市2023届高三二模语文试题(解析版)
- Office办公软件理论知识考核试卷
评论
0/150
提交评论