中考数学二轮培优专题16 婆罗摩笈多模型(解析版)_第1页
中考数学二轮培优专题16 婆罗摩笈多模型(解析版)_第2页
中考数学二轮培优专题16 婆罗摩笈多模型(解析版)_第3页
中考数学二轮培优专题16 婆罗摩笈多模型(解析版)_第4页
中考数学二轮培优专题16 婆罗摩笈多模型(解析版)_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题16婆罗摩笈多模型婆罗摩笈多模型条件:1)公共顶点:顶点C2)等线段:BC=DCCE=CG3)顶角相等:∠DCB=∠GCE=90°一、基础模型【问题一已知中点证垂直】已知:四边形ABCD、CEFG为正方形,连接BE、DG,I、C、H三点共线若点I为中点,则CH⊥BE,BE=2IC,S∆DCG=S∆BCE证明(思路):①延长IC到点P,使PI=IC,连接PG先证明∆DIC≌∆GIP(SAS),所以DC=PG,∠DCI=∠P则DC‖PG∵四边形ABCD、CEFG为正方形∴DC=BCCE=CG∠GCE=∠BCD=90°∴BC=PG∵∠PGC==180°-∠DCG(两直线平行同旁内角互补)∠BCE=360°-90°-90°-∠DCG=180°-∠DCG∴∠PGC=∠BCE则∆PCG≌∆BEC(SAS)∴∠PCG=∠CEB∵∠PCG+∠ECH=180°-90°=90°∴∠CEB+∠ECH=90°∴∠CHE=90°∴CH⊥BE②∵∆PCG≌∆BEC∴PC=BE∴BE=2IC③S∆EBC=S∆PCG=S∆PIG+S∆GCI=S∆DIC+S∆GCI=S∆DCG【问题二已知垂直证中点】已知:四边形ABCD、CEFG为正方形,连接BE、DG,I、C、H三点共线若CH⊥BE,则点I为中点,BE=2IC,S∆DCG=S∆BCE证明(思路):①分别过点D、G作DM⊥CI与点M,NG⊥CI于点N∵∠2+∠3=90°,∠1+∠2=90°∴∠1=∠3由已知条件可得∆CDM≌∆BCH(AAS)∴DM=CHCM=BH同理∆GCN≌∆CEH(AAS)∴NG=CHNC=HE∴NG=DM再证明∆DMI≌∆GNI(AAS)∴DI=IGMI=NI则点I为中点②BE=BH+HE=CM+NC=NM+NC+NC=2NI+2NC=2IC③∵S∆BHC=S∆DMCS∆GNC=S∆CHES∆DMI=S∆GNI∴S∆DCG=S∆DCI+S∆GNI+S∆CNG=S∆DMC+S∆GNC=S∆BHC+S∆CHE=S∆BCE二、变形变形一:如图∆AOB、∆COD为等腰直角三角形,连接AC、BD,MN过点O且与AC交于点N、BD交于点M则有如下结论:1)若点N为中点,则MN⊥BD,2)若MN⊥BD,则点N为中点3)BD=2ON4)S∆BOD=S∆AOC证明(思路):1)延长MN至点H,使NH=NO,连接HC先证明∆ANO≌∆CNH(SAS),所以AO=HC,∠AON=∠H则AO‖HC再证明∆HOC≌∆BDO(SAS)∴∠COH=∠ODBHO=BD∴BD=2ON,S∆BOD=S∆AOC∵∠COH+∠DOM=90°∴∠ODB+∠DOM=90°∴∠OMD=90°∴MN⊥BD2)方法一:构造一线三垂直模型(与问题二证明方法相同)方法二:在BD上截取一点P,使BP=ON,连接OP先证明∆ANO≌OBP(SAS)∴∠ANO=∠BPOAN=OPON=BP再证明∆NOC≌∆PDO(SAS)∴NC=OPON=PD∴BD=2ON,S∆BOD=S∆AOC变形二:如图∆AOB、∆COD为等腰直角三角形,连接AC、BD,MN过点O且与AC交于点N、BD交于点M则有如下结论:1)若点N为中点,则MN⊥BD,2)若MN⊥BD,则点N为中点3)BD=2ON4)S∆BOD=S∆AOC证明(自行证明):1)延长ON至点H,使ON=NH,连接AH2)在BD上截取DH=ON,连接OH【培优训练】1.(2021秋·重庆·八年级重庆市大学城第一中学校校联考期中)如图,在锐角SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0边上的高,分别以SKIPIF1<0为一边,向外作等腰SKIPIF1<0和等腰SKIPIF1<0其中SKIPIF1<0,连接SKIPIF1<0与SKIPIF1<0的延长线交于点SKIPIF1<0,下列5个结论:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0.其中正确的有()A.5个 B.4个 C.3个 D.2个【答案】B【分析】通过证明SKIPIF1<0,即可证明①,②;过点D作SKIPIF1<0于点M,过点E作SKIPIF1<0于点N,证明SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即可证明③,⑤;根据直角三角形两个锐角互余,通过角度的等量代换,即可证明④.【详解】解:①∵SKIPIF1<0SKIPIF1<0为等腰直角三角形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故①正确;②∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故②正确;③过点D作SKIPIF1<0于点M,过点E作SKIPIF1<0于点N,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,同理可得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0为SKIPIF1<0的中线,当SKIPIF1<0时,SKIPIF1<0,∵SKIPIF1<0为锐角三角形,∴SKIPIF1<0,故③不正确,不符合题意;④∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0边上的高,∴SKIPIF1<0,∴SKIPIF1<0,故④正确;⑤由③可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.综上,正确的有①②④⑤,故选:B.【点睛】本题主要考查了等腰三角形的性质,三角形全等的性质和判定,解题的关键是熟练掌握全等三角形对应边相等,对应角相等,根据题意画出辅助线,构建全等三角形.2.(2022春·四川自贡·八年级校考期中)如图,在锐角三角形ABC中,AH是BC边上的高,分别以AB,AC为一边,向外作正方形ABDE和ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论是(

)A.①②③ B.①②④ C.①③④ D.①②③④【答案】D【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,∵AH⊥BC,∴∠ABH+∠BAH=90°,∵∠BAE=90°,∴∠EAP+∠BAH=90°,∴∠ABH=∠EAP,即∠EAM=∠ABC,故④正确;∵∠AHB=∠P=90°,AB=AE,∴△ABH≌△EAP(AAS),∴EP=AH,同理可得GQ=AH,∴EP=GQ,∵在△EPM和△GQM中,SKIPIF1<0,∴△EPM≌△GQM(AAS),∴EM=GM,∴AM是△AEG的中线,故③正确.综上所述,①②③④结论都正确.故答案为:D.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.3.(2022·浙江温州·校考一模)如图,在SKIPIF1<0中以SKIPIF1<0为边向外作正方形SKIPIF1<0与正方形SKIPIF1<0,连结SKIPIF1<0,并过SKIPIF1<0点作SKIPIF1<0于SKIPIF1<0并交SKIPIF1<0于SKIPIF1<0.若SKIPIF1<0,则SKIPIF1<0的长为(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】过D作DN⊥CF于点N,作DP⊥HM于点P,过点F作FQ⊥HM,交HM的延长线于点Q,依据勾股定理即可求得DF的长,再根据全等三角形的对应边相等可得FQ=DP,进而判定△FQM≌△DPM,即可得到M是FD的中点,据此可得DM=SKIPIF1<0DF.【详解】解:如图,过D作DN⊥CF于点N,作DP⊥HM于点P,过点F作FQ⊥HM,交HM的延长线于点Q,∵∠ACB=120°,∠ACF=∠BCD=90°,∴∠DCN=60°,∠CDN=30°,又∵BC=DC=2,AC=FC=3,∴CN=SKIPIF1<0CD=1,FN=CF−CN=3−1=2,DN=SKIPIF1<0,Rt△DFN中,DF=SKIPIF1<0,∵四边形BCDE是正方形,∴BC=CD,∠BCD=90°,又∵CH⊥AB,∴∠DCP+∠BCH=∠CBH+∠BCH=90°,∴∠DCP=∠CBH,又∵∠DPC=∠BHC=90°,∴△DCP≌△CBH(AAS),∴DP=CH,同理可得△ACH≌△CFQ,∴FQ=CH,∴FQ=DP,又∵∠Q=∠DPM=90°,∠FMQ=∠DMP,∴△FQM≌△DPM(AAS),∴FM=DM,即M是FD的中点,∴DM=SKIPIF1<0DF=SKIPIF1<0.故选:A.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理的综合运用,通过作辅助线构造全等三角形,灵活运用全等三角形的对应边相等是解决问题的关键.4.(2022秋·浙江温州·九年级温州市第十二中学校考阶段练习)如图,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,分别以SKIPIF1<0的三边为边向外作三个正方形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,延长SKIPIF1<0,交边SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0,分别交边SKIPIF1<0,SKIPIF1<0于点SKIPIF1<0,SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,则正方形SKIPIF1<0的边长为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0SKIPIF1<0【答案】D【分析】证明SKIPIF1<0,SKIPIF1<0,求得SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0于点SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,证明SKIPIF1<0,根据相似三角形的性质即可求解.【详解】解:∵正方形SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0与SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∵四边形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0与SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,如图,过点SKIPIF1<0作SKIPIF1<0于点SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,即正方形SKIPIF1<0的边长为SKIPIF1<0,故选:D.【点睛】本题考查了勾股定理,正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,缕清线段之间的关系是解题的关键.5.(2022秋·吉林长春·八年级校考阶段练习)在锐角三角形ABC中,AH是BC边上的高,分别以AB,AC为一边,向外作正方形ABDE和ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论的个数是(

)A.4个 B.3个 C.2个 D.1个【答案】A【分析】根据正方形的性质和全等三角形的性质逐项分析即可得出答案.【详解】根据正方形的性质可得AB=AE,AC=AG,∠BAE=∠CAG=90°,然后求出∠CAE=∠BAG,再利用“边角边”证明△ABG和△AEC全等,根据全等三角形对应边相等可得BG=CE,判定①正确;设BG、CE相交于点N,根据全等三角形对应角相等可得∠ACE=∠AGB,然后求出∠CNG=90°,根据垂直的定义可得BG⊥CE,判定②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,根据同角的余角相等求出∠ABH=∠EAP,再利用“角角边”证明△ABH和△EAP全等,根据全等三角形对应角相等可得∠EAM=∠ABC判定④正确,全等三角形对应边相等可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用“角角边”证明△EPM和△GQM全等,根据全等三角形对应边相等可得EM=GM,从而得到AM是△AEG的中线,故③正确.综上所述,①②③④结论都正确.故选A.考点:全等三角形的判定与性质;正方形的性质.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,在解答时作辅助线EP⊥HA的延长线于P,过点G作GQ⊥AM于Q构造出全等三角形是难点,运用全等三角形的性质是关键.6.(2022秋·八年级课时练习)在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是_________.【答案】①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,∵AH⊥BC,∴∠ABH+∠BAH=90°,∵∠BAE=90°,∴∠EAP+∠BAH=90°,∴∠ABH=∠EAP,即∠EAM=∠ABC,故④正确;∵∠AHB=∠P=90°,AB=AE,∴△ABH≌△EAP(AAS),∴EP=AH,同理可得GQ=AH,∴EP=GQ,∵在△EPM和△GQM中,SKIPIF1<0,∴△EPM≌△GQM(AAS),∴EM=GM,∴AM是△AEG的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.7.(2022·湖北武汉·统考中考真题)如图,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,分别以SKIPIF1<0的三边为边向外作三个正方形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,连接SKIPIF1<0.过点SKIPIF1<0作SKIPIF1<0的垂线SKIPIF1<0,垂足为SKIPIF1<0,分别交SKIPIF1<0,SKIPIF1<0于点SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,则四边形SKIPIF1<0的面积是_________.【答案】80【分析】连接LC、EC、EB,LJ,由平行线间同底的面积相等可以推导出:SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,证得四边形SKIPIF1<0是矩形,可得SKIPIF1<0,在正方形SKIPIF1<0中可得:SKIPIF1<0,故得出:SKIPIF1<0.由SKIPIF1<0,可得SKIPIF1<0,即可求出SKIPIF1<0,可得出【详解】连接LC、EC、EB,LJ,在正方形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴四边形SKIPIF1<0是矩形,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0∴SKIPIF1<0.∵SKIPIF1<0.∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.设SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0.故答案为:80.【点睛】此题考查正方形的性质、矩形的性质与判定、相似三角形的判定与性质、勾股定理,平行线间同底的两个三角形,面积相等;难度系数较大,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.8.(2023秋·四川南充·八年级四川省南充高级中学校考期末)如图,以SKIPIF1<0的两边SKIPIF1<0,SKIPIF1<0为边向形外作正方形SKIPIF1<0,SKIPIF1<0,则称这两个正方形为外展双叶正方形.有以下5个结论:①SKIPIF1<0面积与SKIPIF1<0面积相等.②过点SKIPIF1<0作边SKIPIF1<0的垂线交SKIPIF1<0于点SKIPIF1<0,则SKIPIF1<0.③SKIPIF1<0为边SKIPIF1<0的中点,SKIPIF1<0延长线与SKIPIF1<0交于点SKIPIF1<0,则SKIPIF1<0且SKIPIF1<0.④连接SKIPIF1<0、SKIPIF1<0相交于点SKIPIF1<0,则SKIPIF1<0且SKIPIF1<0.⑤连结SKIPIF1<0,SKIPIF1<0为SKIPIF1<0的中点,则SKIPIF1<0且SKIPIF1<0.其中正确的结论是_________(填序号).【答案】①②③④⑤【分析】①作SKIPIF1<0,作SKIPIF1<0,证明SKIPIF1<0,推出SKIPIF1<0,由三角形面积公式即可判断;②作出图2的辅助线,证明SKIPIF1<0/,推出SKIPIF1<0,得到SKIPIF1<0,再证明SKIPIF1<0,即可判断;③作出图3的辅助线,证明SKIPIF1<0,再证明SKIPIF1<0,即可判断;④作出图4的辅助线,证明SKIPIF1<0,推出SKIPIF1<0,再证明SKIPIF1<0,即可判断;⑤作出图5的辅助线,证明SKIPIF1<0和SKIPIF1<0,推出SKIPIF1<0,再根据直角三角形的性质即可判断.【详解】解:①如图1,过点C作SKIPIF1<0于点M,过点H作SKIPIF1<0的延长线于点N,则SKIPIF1<0,∵四边形SKIPIF1<0和四边形SKIPIF1<0都是正方形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0(同角的补角相等),在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0面积与SKIPIF1<0面积相等,故①正确;②如图2,过点A作SKIPIF1<0的垂线交SKIPIF1<0于点D,设垂足为K,过点H作SKIPIF1<0于点Q,过点F作SKIPIF1<0的延长线于点T,则SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0(同角的余角相等),在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,同理可证SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故②正确;③如图3,延长SKIPIF1<0至L,使SKIPIF1<0,连接SKIPIF1<0,则SKIPIF1<0,∵O为边SKIPIF1<0的中点,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由②得SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,故③正确;④如图4,连接SKIPIF1<0相交于SKIPIF1<0,设SKIPIF1<0交SKIPIF1<0于点W,∵SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故④正确;⑤如图5,延长SKIPIF1<0至I,使SKIPIF1<0,连接SKIPIF1<0并延长交SKIPIF1<0于J,∵四边形SKIPIF1<0和四边形SKIPIF1<0都是正方形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵S是SKIPIF1<0的中点,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故⑤正确;综上所述,正确的有①②③④⑤,故答案为:①②③④⑤.【点睛】本题考查了正方形的性质,三角形的面积公式,全等三角形的判定和性质,直角三角形斜边中线的性质,等腰三角形的判定和性质,熟练掌握各性质定理是解题的关键.9.(2020·黑龙江鹤岗·统考中考真题)以SKIPIF1<0的两边SKIPIF1<0、SKIPIF1<0为边,向外作正方形SKIPIF1<0和正方形SKIPIF1<0,连接SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,延长SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0.(1)如图1,若SKIPIF1<0,SKIPIF1<0,易证:SKIPIF1<0;(2)如图2,SKIPIF1<0;如图3,SKIPIF1<0,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.【答案】(1)见解析;(2)SKIPIF1<0时,(1)中结论成立,证明见解析;SKIPIF1<0时,(1)中结论成立,证明见解析.【分析】(1)由等腰直角三角形的性质得出∠MAC=45°,证得∠EAN=∠NAG,由等腰三角形的性质得出结论;(2)如图1,2,证明方法相同,利用“AAS”证明△ABM和△EAP全等,根据全等三角形对应边相等可得EP=AM,同理可证GQ=AM,从而得到EP=GQ,再利用“AAS”证明△EPN和△GQN全等,根据全等三角形对应边相等可得EN=NG.【详解】(1)证明:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,同理SKIPIF1<0,∴SKIPIF1<0,∵四边形SKIPIF1<0和四边形SKIPIF1<0为正方形,∴SKIPIF1<0,∴SKIPIF1<0.(2)如图1,SKIPIF1<0时,(1)中结论成立.理由:过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延长线于SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,∵四边形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,同理可得:SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.如图2,SKIPIF1<0时,(1)中结论成立.理由:过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延长线于SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,∵四边形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,同理可得:SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定及性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确作出辅助线,构造全等三角形,运用全等三角形的性质是解题的关键.10.(2020·福建·统考模拟预测)求证:对角线互相垂直圆内接四边形,自对角线的交点向一边作垂线,其延长线必平分对边.要求:(1)在给出的圆内接四边形作出PE⊥BC于点E,并延长EP与AD交于点F,不写作法,保留作图痕迹(2)利用(1)中所作的图形写出已知、求证和证明过程.【答案】(1)见解析;(2)DF=FP=AF,点F为AD的中点,过程见解析【分析】(1)过P作BC的垂线即可得到答案;(2)根据题意写好已知,求证,利用圆周角定理及直角三角形的性质证明【详解】解:(1)补全的图形如图所示;

(2)已知:四边形ABCD为圆内接四边形,AC⊥BD,PE⊥BC.延长EP交AD于点F.求证:点F为AD的中点证明:∵AC⊥BD,PE⊥BC∴∠CPD=∠CEF=∠APD=90°∵EF是线段

∴∠CPE+∠CPD+∠DPF=180°,即∠CPE+∠DPF=90°∵在Rt△CEP中,∠CPE+∠ECP=90°∴∠ECP=∠DPF∵∠ACB与∠ADB为同弧所对的圆周角∴∠ACB=∠ADB,即∠ECP=∠PDF∴∠DPF=∠PDF∴△DPF为等腰三角形,DF=FP∵∠APF=∠APD-∠DPF=90°-∠DPF,∠PAF=90°-∠PDF∴∠APF=∠PAF∴△APF为等腰三角形,PF=AF即DF=FP=AF,点F为AD的中点.【点睛】本题考查的是过一点作已知直线的垂线,圆周角定理,等腰三角形的判定,直角三角形两锐角互余,掌握以上知识是解题的关键.11.(2020·全国·九年级专题练习)如图,在△ABC外分别以AB,AC为边作正方形ABDE和正方形ACFG,连接EG,AM是△ABC中BC边上的中线,延长MA交EG于点H.求证:(1)AMSKIPIF1<0EG;(2)AH⊥EG;(3)EG2+BC2=2(AB2+AC2).【答案】(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)延长AM到点N,使MN=MA,连接BN,先证得△MBN≌△MCA,得到∠BNM=∠CAM,NB=AC,从而得到BN∥AC,NB=AG,进一步得到∠NBA=∠GAE,根据SAS证得△NBA≌△GAE,即可证得结论;(2)由△NBA≌△GAE得∠BAN=∠AEG,进一步求得∠HAE+∠AEH=90°,即可证得∠AHE=90°,得到AH⊥EG;(3)连接CE、BG,易证△ACE≌△ABG,得出CE⊥BG,根据勾股定理得到EG2+BC2=CG2+BE2,从而得到2(AB2+AC2).【详解】(1)证明:延长AM到点N,使MN=MA,连接BN,∵AM是△ABC中BC边上的中线,∴CM=BM,在△MBN和△MCA中SKIPIF1<0∴△MBN≌△MCA(SAS),∴∠BNM=∠CAM,NB=AC,∴BN∥AC,NB=AG,∴∠NBA+∠BAC=180°,∵∠GAE+∠BAC=360°﹣90°﹣90°=180°,∴∠NBA=∠GAE,在△NBA和△GAE中SKIPIF1<0∴△NBA≌△GAE(SAS),∴AN=EG,∴AMSKIPIF1<0EG;(2)证明:由(1)△NBA≌△GAE得∠BAN=∠AEG,∵∠HAE+∠BAN=180°﹣90°=90°,∴∠HAE+∠AEH=90°,∴∠AHE=90°,即AH⊥EG;(3)证明:连接CE、BG,∵四边形ACFG和四边形ABDE是正方形,∴AC=AG,AB=AE,∠CAG=∠BAE=90°,∴∠BAG=∠CAE,∴△ACE≌△ABG∴CE⊥BG,∴EG2+BC2=CG2+BE2,∴EG2+BC2=2(AB2+AC2).【点睛】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,平行线的判定和性质,勾股定理的应用等,作出辅助线构建全等三角形是解题的关键.12.(2019秋·湖北十堰·九年级校联考期末)已知,△ABC中,BC=6,AC=4,M是BC的中点,分别以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG,MA的延长线交EG于点N,(1)如图,若∠BAC=90°,求证:AM=SKIPIF1<0EG,AM⊥EG;(2)将正方形ACFG绕点A顺时针旋转至如图,(1)中结论是否仍然成立?请说明理由;(3)将正方形ACFG绕点A顺时针旋转至B,C,F三点在一条直线上,请画出图形,并直接写出AN的长.【答案】(1)证明见解析;(2)结论不变;(3)AN的值为SKIPIF1<0.【分析】(1)方法一:如图1中,直接证明△ABC≌△AEG即可解决问题;方法二:如图2中,如图,延长AM至点H,使AM=MH,连接BH.证明△EAG≌△ABH即可解决问题.(2)如图3中,结论不变.证明方法类似方法二.(3)分两种情形分别求解即可解决问题.【详解】(1)证明:方法一:如图1中,∵四边形ABDE,四边形ACFG均为正方形,∴∠BAE=∠CAG=90°=∠BAC=∠EAG,且AB=AE,AC=AG,在△ABC和△AEG中,SKIPIF1<0∴△ABC≌△AEG(SAS),∴BC=EG,∠CBA=∠AEG,又∵M是AB的中点,∴AM=BM=SKIPIF1<0BC,∴AM=SKIPIF1<0EG,∠MBA=∠MAB=∠AEN,∴∠ANE=180°﹣(∠NEA+∠EAN)=180°﹣(∠BAM+∠EAN)=180°﹣(180°﹣90°)=90°,∴AM⊥EG.方法二:如图,延长AM至点H,使AM=MH,连接BH.在△ACM和△HBM中,SKIPIF1<0△ACM≌△HBM(SAS),∴BH=AC,∠BHM=∠CAM,∴AC∥BH,∴∠HBA=∠CAB=90°∵四边形ABDE,四边形ACFG均为正方形,∴∠BAE=∠CAG=90°=∠BAC=∠EAG,且AB=AE,AC=AG,∴BH=AG,在△EAG和△ABH中,SKIPIF1<0∴△EAG≌△ABH(SAS),∴EG=BC,∠NEA=∠HAB,∴∠ANE=180°﹣(∠NEA+∠EAN)=180°﹣(∠HAB+∠EAN)=180°﹣(180°﹣90°)=90°,∴AM⊥EG,∵∠BAC=90°,AM为BC中点,∴AM=SKIPIF1<0BC,∴AM=SKIPIF1<0EG.(2)如图3中,结论不变.理由:在△ACM和△HBM中,SKIPIF1<0△ACM≌△HBM(SAS),∴BH=AC,∠BHM=∠CAM,∴AC∥BH,∴∠HBA+∠CAB=90°,∵四边形ABDE,四边形ACFG均为正方形,∴∠BAE=∠CAG=90°,∴∠BAC+∠EAG=180°,∴∠ABH=∠EAG,且AB=AE,AC=AG,∴BH=AG,在△EAG和△ABH中,SKIPIF1<0△EAG≌△ABH(SAS),∴EG=BC,∠NEA=∠HAB,∴∠ANE=180°﹣(∠NEA+∠EAN)=180°﹣(∠HAB+∠EAN)=180°﹣(180°﹣90°)=90°,∴AM⊥EG,∵∠BAC=90°,AM为BC中点,∴AM=SKIPIF1<0BC,∴AM=SKIPIF1<0EG.(3)①如图4﹣1中,当点F在BC的延长线上时,作CH⊥AM于H.易证:△ANG≌△CHA,可得AN=CH,在Rt△ACM中,∵AC=4,CM=3,∴SKIPIF1<0∵SKIPIF1<0•AM•CH=SKIPIF1<0•AC•CM,∴CH=SKIPIF1<0,∴AN=CH=SKIPIF1<0.②如图4﹣2中,当点F在线段BC上时,同法可得AN=CH=SKIPIF1<0.综上所述,AN的值为SKIPIF1<0.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常压轴题.13.(2019春·江西新余·九年级新余四中校考阶段练习)如图,分别以SKIPIF1<0的边SKIPIF1<0为腰向外作等腰SKIPIF1<0和等腰SKIPIF1<0,连SKIPIF1<0是SKIPIF1<0的中线.

(1)知识理解:图①所示,当SKIPIF1<0时,则SKIPIF1<0与SKIPIF1<0的位置关系为______,数量关系为______;(2)知识应用:图②所示,当SKIPIF1<0时,M,N分别是BC,DE的中点,求证:SKIPIF1<0且SKIPIF1<0;(3)拓展提高:图③所示,四边形SKIPIF1<0中,SKIPIF1<0,分别以边SKIPIF1<0和SKIPIF1<0为腰作等腰SKIPIF1<0和等腰SKIPIF1<0,连SKIPIF1<0,分别取SKIPIF1<0、SKIPIF1<0的中点SKIPIF1<0,连SKIPIF1<0.①求证:SKIPIF1<0;②直接写出SKIPIF1<0之间的数量关系.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)详见解析;(3)①详见解析;②SKIPIF1<0【分析】(1)根据题意,延长FA交BC于点H,通过等腰三角形的相关性质得到全等条件,从而证明SKIPIF1<0,进而即可得解;(2)根据题意,延长CA至F,使SKIPIF1<0,FA交DE于点P,并连接BF,先证明SKIPIF1<0,再根据等角的余角相等以及中位线的性质即可得解;(3)①根据题意,将SKIPIF1<0沿AH方向平移至SKIPIF1<0,SKIPIF1<0沿DH方向平移至SKIPIF1<0,连接EN,FQ,NG,QG,延长HG至S,使GS=GH,连接HS,QS,通过证明SKIPIF1<0及SKIPIF1<0进而即可得解;②通过上述问题得到的结论结合SKIPIF1<0进行求解即可得解.【详解】(1)SKIPIF1<0,SKIPIF1<0证明:如下图所示,延长FA交BC于点H∵AB=AC,SKIPIF1<0与SKIPIF1<0为等腰直角三角形∴SKIPIF1<0∴SKIPIF1<0与SKIPIF1<0为等腰三角形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵AF是SKIPIF1<0的中线,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0在SKIPIF1<0与SKIPIF1<0中SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0;(2)证明:如下图,延长CA至F,使SKIPIF1<0,FA交DE于点P,并连接BF∵SKIPIF1<0与SKIPIF1<0为等腰直角三角形∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0与SKIPIF1<0中SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0,M是BC中点∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0;(3)①证明:将SKIPIF1<0沿AH方向平移至SKIPIF1<0,SKIPIF1<0沿DH方向平移至SKIPIF1<0,连接EN,FQ,NG,QG,延长HG至S,使GS=GH,连接HS,QS∵AH=DH,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0又∵EG=FG∴SKIPIF1<0∴GN=GQ,SKIPIF1<0∵E,G,F三点共线∴N,G,Q三点共线∴四边形NHQS是平行四边形∴SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0;②SKIPIF1<0证明:∵SKIPIF1<0∴SKIPIF1<0.【点睛】本题主要考查了三角形及四边形的相关综合问题,其中重点需要掌握三角形全等的判定,等腰三角形的“三线合一”性质,三角形中位线定理,平行四边形的性质及判定等相关知识,该部分内容比较综合,也是考试重点,要求熟练掌握.14.(2021秋·河南新乡·九年级统考期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在SKIPIF1<0ABC中,∠BAC=90°,SKIPIF1<0=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:SKIPIF1<0=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在SKIPIF1<0ABC中,SKIPIF1<0=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在SKIPIF1<0ABC中,沿SKIPIF1<0ABC的边AB、AC向外作矩形ABDE和矩形ACFG,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.【答案】(1)见解析(2)结论还成立,证明见解析(3)①见解析②BC=AI【分析】(1)由条件可证明△ABD∽△CAE,可得SKIPIF1<0=SKIPIF1<0=k;(2)由条件可知∠BAD+∠CAE=180°−α,且∠DBA+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论