多元统计分析实验报告_第1页
多元统计分析实验报告_第2页
多元统计分析实验报告_第3页
多元统计分析实验报告_第4页
多元统计分析实验报告_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多元统计分析课程实验数据分析报告 08统计2班辛岩第页多元统计分析课程实验数据分析报告 08统计2班辛岩《应用多元统计分析》课程实验报告项目名称:数据分析学生姓名:辛岩学生学号:3108010664指导教师:邓志民完成日期:2011年4月28日一、引言数据说明1999年财政部、国家经贸委、人事部和国家计委联合发布了《国有资本金绩效平价规则》。其中,竞争性工商业指标体系包括下面八大基本指标:净资产收益率、总资产报酬率、资产负债率、总资产周转率、流动资产周转率、已获利息倍数、销售增长率和资本累计率。所以我们借助这一指标体系对我国上市公司的运营情况进行分析,数据来自35家上市公司2000年年报数据,这35家上市公司分别来自电力、煤气及水的生产和供应业,房地产业,信息技术业。二、数据分析1.散点图分析散点图可以很直观的看出两个变量之间的关系,所以为了大致了解这8个指标体系之间存在的关系,可以对35家公司的8个指标体系的数据做散点图,如图1所示。图18个指标体系间的散点图 从图1中可以明显的看出净资产收益率与总资产收益率之间有近似的线性关系,而且也是显而易见,净资产收益率增加了则总资产收益率必然会增加。而其他的变量之间则基本看不出来有什么关系。2.箱线图分析箱线图是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有对称性,分布的分散程度等信息。还可以直观明了地识别出数据中的异常值。对数据做箱线图,如图2所示。图28个指标体系的箱线图从图中我们可以看到总资产周转率和流动资产周转率两个指标的箱线图由于过小而无法看清楚,是因为这两个指标的取值过小而引起的,我们可以将这两个取值相对较小的指标单独做一次箱线图,如图3所示。图3总资产周转率和流动资产周转率箱线图从图2、图3我们就可以看出:净资产收益率的数据还算比较集中,但是分布不是很均匀,还有1个温和的异常值;总资产收益率的数据相对比较集中,有2个温和的异常值;资产负债率的数据分布不是太集中,而且数据分布的也不均匀,可以看到中位数偏小,但没有异常值;总资产周转率的数据不是很集中,分布也不均匀,有2个温和的异常值和1个极端异常值;流动资产周转率的数据不是很集中,分布也不均匀,有2个温和的异常值;已获利息倍数的数据分布不均匀,中位数偏小,有2个温和异常值;销售增长率的数据分布相对来说比较均匀,且没有异常值;资本积累率的数据分布很不均匀,中位数偏小,有2个温和的异常值和1个极端异常值。3.正态性检验 用SPSS对这8个指标进行正态性检验,得到数据表1。TestsofNormalityKolmogorov-SmirnovaShapiro-WilkStatisticdfSig.StatisticdfSig.净资产收益率%.15235.039.94435.077总资产报酬率%.13735.095.94235.064资产负债率%.14435.065.93935.052总资产周转率.23535.000.68335.000流动资产周转率.15935.026.85035.000已获利息倍数.17235.011.88035.001销售增长率%.11635.200*.98235.836资本积累率%.25235.000.69535.000a.LillieforsSignificanceCorrection*.Thisisalowerboundofthetruesignificance.表1正态性检验我们可以看到表中给出了两种检验方法的数据,一种是KolmogorovSmirnov检验方法,另一种是Shapiro-Wilk检验方法。SPSS规定:当样本量时,结果以Shapiro-Wilk检验为准,当样本量时,结果以KolmogorovSmirnov检验为准,因为这里的样本量,所以结果以Shapiro-Wilk检验为准。在的条件下,总资产周转率、流动资产周转率、已获利息倍数、资本累计率这4个指标的p值(Sig值)小于。也就是我们可以以的把握说净资产收益率、总资产报酬率、资产报酬率、销售增长率这4个指标的数据服从正态分布,而总资产周转率、流动资产周转率、已获利息倍数、资本累计率这4个指标的数据不服从正态分布。我们也可以从指标数据的直方图中很直观的看出来是否服从正态分布,在这就以销售增长率、资本积累率这两个指标的直方图为例看一看,如图4、图5所示。从图中我们可以看到销售增长率的直方图呈中间多、两头少,跟正态分布的曲线很接近,可以认为近似服从正态分布;而资本累计率的直方图我们可以看到跟正态分布的曲线完全没联系,就可以认为不服从正态分布。图4销售增长率的直方图图5资本积累率的直方图4.描述性统计量4.1均值向量 通过均值向量可以了解到每个指标的平均取值情况,进一步了解这些企业的平均发展状况。在这我们了计算了信息技术行业当中的每个指标的平均值,如表2所示。DescriptiveStatisticsNMean净资产收益率%913.3898总资产报酬率%98.7911资产负债率%946.8900总资产周转率9.8911流动资产周转率91.1756已获利息倍数98.4744销售增长率%944.2956资本积累率%924.5311ValidN(listwise)9表2信息技术行业的均值向量 我们从表中的数据可以看到,信息技术行业中一共有9家公司,其每个指标的均值分别为:净资产收益率:13.3898%、总资产报酬率:8.7911%、资产负债率:46.89%、总资产周转率:89.11%、流动资产周转率:117.56%、已获利息倍数:8.4744、销售增长率:44.2956%、资本累计率:24.5311%;其中流动资产周转率平均达到了117.56%,说明信息技术行业中的企业流动资产的周转速度是相当快的,而销售增长率也达到了44.2956%,说明信息技术行业中的企业的整体经营状况都很好,而且市场占有能力也很强。4.2协差阵 协方差用于衡量两个变量的总体误差,如果说两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值,另外一个却小于自身的期望值,则这两个变量之间的协方差就是负值;若两个变量是相互独立的,则协方差就是0。 表3中就计算了8个变量,每两个变量之间的的协方差,组成一个矩阵,称为协方差阵,简称协差阵。净资产收益率%总资产报酬率%资产负债率%总资产周转率流动资产周转率已获利息倍数%销售增长率%资本累计率%净资产收益率%51.83326.58957.9374.9254.7561.882184.536100.574总资产报酬率%26.58915.0702.9192.2902.5773.93589.11440.536资产负债率%57.93722.919192.8673.5893.081-42.103178.892-39.183总资产周转率4.2952.2903.5890.4540.514-0.02710.0236.018流动资产周转率4.7562.5773.0810.5140.6160.36711.4568.188已获利息倍数%1.8823.935-42.103-0.0270.36721.33359.00272.438销售增长率%184.53689.114178.89210.02311.45659.0021223.792771.603销售增长率%100.57440.536-39.1836.0188.18872.438771.603868.694表3协差阵 从表3的数据中我们可以看到,协差阵就是一个对角矩阵,因为A、B的协方差和B、A的协方差显然是相等的。我们可以看到有3组指标之间的协方差是负的,分别是资产负债率和已获利息倍数、资产负债率和销售增长率、总资产周转率和已获利息倍数这3组指标之间的协方差,可以初步说明这3组指标变量之间的变化趋势是相反的。这也复合经济意义,负债率提高了,则获得的利息、销售额必然会减少。4.3相关系数矩阵相关系数是衡量两个变量之间相关程度的指标,样本相关系数用表示,其取值范围是。值越大,说明变量之间的线性相关程度越高;值越小,说明变量之间的线性相关程度越低。其中:时称为正相关;时称为完全正相关;时称为负相关;时称为完全负相关;完全正相关或负相关时,此两个变量间的散点图呈一条直线。一般来说,可以将相关程度分为以下几个等级:时,认为高度相关;时,认为中度相关;时,认为低度相关;时,认为相关程度极弱。现将各指标之间的相关系数计算得到一个相关系数矩阵,如表4所示:净资产收益率%总资产报酬率%资产负债率%总资产周转率流动资产周转率已获利息倍数%销售增长率%资本累计率%净资产收益率%10.9510.5790.8860.8410.0570.7330.474总资产报酬率%0.95110.4250.8760.8450.2190.6560.354资产负债率%0.5790.42510.3840.283-0.6560.368-0.096总资产周转率0.8860.8760.38410.973-0.0090.4250.303流动资产周转率0.8410.8450.2830.97310.1010.4170.354已获利息倍数%0.0570.219-0.656-0.0090.10110.3650.532销售增长率%0.7330.6560.3680.4250.4170.36510.748销售增长率%0.4740.354-0.0960.3030.3540.5320.7481表4相关系数矩阵 从表4的数据我们可以看到,相关系数矩阵也是一个对角阵。其中有3组指标的相关系数为负值,说明这3组指标之间成负相关性,分别是资产负债率和已获利息倍数、资产负债率和销售增长率、总资产周转率和已获利息倍数这3组指标,这与协差阵里协方差为负值的3组指标是一样的,这就再一次确认了这3组指标之间的变化趋势的相反的。这一点可以从图1的散点图中得到证实。为表示方便,现将净资本收益率、总资产报酬率、资产负债率、总资产周转率、流动资产周转率、已获利息倍数、销售增长率和资本累计率这8个指标分别表示为:,将各个指标间的相关程度进行分类:5.各行业的均值向量、协差阵进行比较 由于不同行业的企业规模、盈利等方面往往都不一样,现在就来看看不同行业的企业的8项指标的均值是否有差异。用SPSS求解得到表5。MultivariateTestscEffectValueFHypothesisdfErrordfSig.InterceptPillai’sTrace.95871.296a8.00025.000.000Wilks’Lambda.04271.296a8.00025.000.000Hotelling’sTrace22.81571.296a8.00025.000.000Roy’sLargestRoot22.81571.296a8.00025.000.000行业Pillai’sTrace1.1104.05416.00052.000.000Wilks’Lambda.1914.034a16.00050.000.000Hotelling’sTrace2.6714.00616.00048.000.000Roy’sLargestRoot1.7885.811b8.00026.000.000a.Exactstatisticb.ThestatisticisanupperboundonFthatyieldsalowerboundonthesignificancelevel.c.Design:Intercept+行业表5各行业均值向量的检验从表中数据,我们可以看到对不同行业均值向量的检验的HotellingsTrace的p值(Sig值)为远小于0.05,说明这3个行业中8项指标之间有显著的差异,我们可以求出这3个行业的各项指标的均值来得到证实,如表6所示:净资产收益率%总资产报酬率%资产负债率%总资产周转率流动资产周转率已获利息倍数%销售增长率%资本累计率%电力、煤气行业12.320010.108237.67450.33821.081814.160916.445520.2245房地产行业5.53494.207354.17600.21270.30203.91733.35404.6973信息技术行业13.38988.791146.89000.89111.17568.474444.295624.5311总体9.68727.240647.11630.42660.77178.308617.996314.6774表6各行业各指标平均值从表6的数据我们可以看到,各行业各指标的均值是有较大的差异,其中房地产行业的各项指标中除资产负债率外,其余指标均偏低。 对各行业各指标数据的协差阵是否有显著差异进行检验,得到表7:Box'sTestofEqualityofCovarianceMatricesaBox'sM260.786F2.152df172df22050.869Sig..000Teststhenullhypothesisthattheobservedcovariancematricesofthedepende

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论