版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市德惠市第三中学2024届八上数学期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在中,点、、的坐标分别为、和,则当的周长最小时,的值为()A. B. C. D.2.下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比是2∶3∶5 B.三条边满足关系C.三条边的比是2∶4∶5 D.三边长为1,2,3.下列图案是轴对称图形的是().A. B. C. D.4.如图,△ABC≌△CDA,则下列结论错误的是()A.AC=CA B.AB=AD C.∠ACB=∠CAD D.∠B=∠D5.如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()A.10° B.20° C.30° D.50°6.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30° B.15° C.25° D.20°7.已知,则的值是()A. B. C.2 D.-28.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于A.44° B.60° C.67° D.77°9.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为Pn,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)10.已知=3,则代数式的值是()A. B. C. D.11.下列四个命题中,真命题的是()A.同角的补角相等 B.相等的角是对顶角C.三角形的一个外角大于任何一个内角 D.两条直线被第三条直线所截,内错角相等12.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.6 B.8 C.8或10 D.10二、填空题(每题4分,共24分)13.的3倍与2的差不小于1,用不等式表示为_________.14.已知,求__________.15.若关于和的二元一次方程组,满足,那么的取值范围是_____.16.若a<b,则-5a______-5b(填“>”“<”或“=”).17.如图,矩形ABCD中,直线MN垂直平分AC,与CD,AB分别交于点M,N.若DM=2,CM=3,则矩形的对角线AC的长为_____.18.如图,中,cm,cm,cm,是边的垂直平分线,则的周长为______cm.三、解答题(共78分)19.(8分)如图,AD是△ABC的外角平分线,∠B=35°,∠DAE=60°,求∠C的度数.20.(8分)如果一个多边形的内角和与外角和之比是13:2,求这个多边形的边数.21.(8分)物华小区停车场去年收费标准如下:中型汽车的停车费为600元/辆,小型汽车的停车费为400元/辆,停满车辆时能收停车费23000元,今年收费标准上调为:中型汽车的停车费为1000元/辆,小型汽车的停车费为600元/辆,若该小区停车场容纳的车辆数没有变化,今年比去年多收取停车费13000元.(1)该停车场去年能停中、小型汽车各多少辆?(2)今年该小区因建筑需要缩小了停车场的面积,停车总数减少了11辆,设该停车场今年能停中型汽车辆,小型汽车有辆,停车场收取的总停车费为元,请求出关于的函数表达式;(3)在(2)的条件下,若今年该停车场停满车辆时小型汽车的数量不超过中型汽车的2倍,则今年该停车场最少能收取的停车费共多少元?22.(10分)如图,中,,点在上,点在上,于点于点,且.求证:.23.(10分)(1)如图1,利用直尺规作图,作出的角平分线,交于点.(2)如图2,在(1)的条件下,若,,,求的长.24.(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.25.(12分)如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,若S△ABD=12,求DF的长.26.求证:线段垂直乎分线上的点到线段两端的距离相等.已知:求证:证明:
参考答案一、选择题(每题4分,共48分)1、B【分析】作点B关于x轴的对称点D,连接CD交x轴于点A,因为BC的长度不变,所以根据轴对称的性质可知此时的周长最小.【题目详解】作点B关于x轴的对称点D,连接CD交x轴于点A,此时的周长最小.作CE⊥y轴于点E.∵B(0,1),∴D(0,-1),∴OB=OD=1.∵C(3,2),∴OC=2,CE=3,∴DE=1+2=3,∴DE=CE,∴∠ADO=45°,OA=OD=1,∴m=1.故选B.【题目点拨】本题考查了等腰直角三角形的判定与性质,图形与坐标的性质,以及轴对称最短的性质,根据轴对称最短确定出点A的位置是解答本题的关键.2、C【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【题目详解】A、三个角的比为2:3:5,设最小的角为2x,则2x+3x+5x=180°,x=18°,5x=90°,能组成直角三角形,故不符合题意;B、三条边满足关系a2=c2-b2,能组成直角三角形,故不符合题意;C、三条边的比为2:4:5,22+42≠52,不能组成直角三角形,故正确;D、12+()2=22,能组成直角三角形,故此选项不符合题意;故选C.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.3、D【分析】根据轴对称图形的概念求解.【题目详解】轴对称图形是图形两部分沿对称轴折叠后可重合.A,B,C图都不满足条件,只有D沿某条直线(对称轴)折叠后,图形两部分能重合,故选D.4、B【解题分析】∵△ABC≌△CDA,∴AB=CD,AC=CA,BC=DA,∠ACB=∠CAD,∠B=∠D,∠DCA=∠BAC.故B选项错误.5、B【解题分析】试题解析:如图:∵直线AB∥CD,∠AHG=50°,∴∠AKG=∠XKG=50°.∵∠CKG是△KMG的外角,∴∠KMG=∠CKG-∠G=50°-30°=20°.∵∠KMG与∠FMD是对顶角,∴∠FMD=∠KMG=20°.故选B.考点:平行线的性质.6、D【分析】利用全等三角形的性质即可解决问题.【题目详解】解:证明:∵AD⊥BC,∴∠BDF=∠ADC,又∵∠BFD=∠AFE,∴∠CAD=∠FBD,在△BDF和△ACD中,∴△BDF≌△ACD(AAS),∴∠DBF=∠CAD=25°.∵DB=DA,∠ADB=90°,∴∠ABD=45°,∴∠ABE=∠ABD﹣∠DBF=20°故选:D.【题目点拨】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、D【分析】先把已知的式子变形为,然后整体代入所求式子约分即得答案.【题目详解】解:∵,∴,∴.故选:D.【题目点拨】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.8、C【解题分析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故选C.9、D【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【题目详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【题目点拨】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.10、D【分析】由得出,即,整体代入原式,计算可得.【题目详解】,,,则原式.故选:.【题目点拨】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.11、A【分析】根据补角的性质、对顶角的概念、三角形的外角的性质、平行线的性质判断即可.【题目详解】解:同角的补角相等,A是真命题;相等的角不一定是对顶角,B是假命题;三角形的一个外角大于任何一个与它不相邻的内角,C是假命题;两条平行线被第三条直线所截,内错角相等,D是假命题;故选:A.【题目点拨】本题主要考查补角的性质、对顶角的概念、三角形的外角的性质、平行线的性质,掌握与角有关的性质是解题的关键.12、D【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【题目详解】解:∵|m-2|+=0,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=1.故选D.【题目点拨】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.二、填空题(每题4分,共24分)13、【分析】首先表示“的3倍与2的差”为,再表示“不小于1”为即可得到答案.【题目详解】根据题意,用不等式表示为故答案是:【题目点拨】本题考查了列不等式,正确理解题意是解题的关键.14、1【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【题目详解】∵,
即,
∴,
解得,故答案为:1.【题目点拨】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.15、m>−1【分析】两方程相加可得x+y=m+1,根据题意得出关于m的不等式,解之可得.【题目详解】解:,①+②得:3x+3y=3m+3,则x+y=m+1,∵,∴m+1>0,解得:m>−1,故答案为:m>−1.【题目点拨】本题考查的是解二元一次方程组以及解一元一次不等式,整体求出x+y=m+1是解题的关键.16、>【解题分析】试题解析:∵a<b,
∴-5a>-5b;17、【分析】连接AM,在Rt△ADM中,利用勾股定理求出AD2,再在Rt△ADC中,利用勾股定理求出AC即可.【题目详解】解:如图,连接AM.∵直线MN垂直平分AC,∴MA=MC=3,∵四边形ABCD是矩形,∴∠D=90°,∵DM=2,MA=3,∴AD2=AM2﹣DM2=32﹣22=5,∴AC=,故答案为:.【题目点拨】本题考查线段垂直平分线的性质,矩形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、16【解题分析】根据垂直平分线的性质得到AD=BD,AE=BE,再根据三角形的周长组成即可求解.【题目详解】∵是边的垂直平分线,∴AD=BD,AE=BE∴的周长为AD+CD+AC=BD+CD+AC=BC+AC=10+6=16cm,故填16.【题目点拨】此题主要考查垂直平分线的性质,解题的关键是熟知垂直平分线的性质.三、解答题(共78分)19、85°【解题分析】试题分析:先根据AD是△ABC的外角∠CAE的角平分线,∠DAE=60°求出∠CAE的度数,再根据三角形外角的性质即可得出结论.试题解析:∵AD平分∠CAE,∴∠DAE=∠CDA=60°∴∠CAE=120°∵∠CAE=∠B+∠C∴∠C=∠CAE-∠B=120°-35°=85°.20、1.【分析】设这个多边形的边数为,依据多边形的内角和与外角和之比是,即可得到的值.【题目详解】解:设这个多边形的边数为,依题意得:,解得,这个多边形的边数为1.【题目点拨】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,多边形的外角和等于360度.21、(1)该停车场去年能停中型汽车15辆,小型汽车35辆;(2);(3)今年该停车场最少能收取停车费共28600元.【分析】(1)设该停车场去年能停中型汽车辆,小型汽车辆,根据等量关系,列出二元一次方程组,即可求解;(2)由题意得:,根据“总停车费=中型汽车停车费+小型汽车费”,即可得到关于的函数表达式;(3)根据题意,列出关于x的不等式,得到x的取值范围,再根据关于的函数表达式,即可求解.【题目详解】(1)设该停车场去年能停中型汽车辆,小型汽车辆根据题意,得:,解得:,答:该停车场去年能停中型汽车15辆,小型汽车35辆;(2)设该停车场去年能停中型汽车辆,小型汽车辆,则,根据题意,得:,(3)由题意,得:,,∴,解得:.∵,∴的值随的增大而增大,∴当时,值最小,最小值为:(元).答:今年该停车场最少能收取停车费共28600元.【题目点拨】本题主要考查二元一次方程组,一元一次不等式,一次函数的综合应用,根据题意,找到等量关系和不等量关系,列出方程,函数和不等式,是解题的关键.22、见解析【分析】根据三角形内角和相等得到∠1=∠B,再由∠1=∠2得出∠2=∠B,推出∠2+∠BDG=90°,即∠CDB=90°,从而得出∠ADC=90°.【题目详解】解:如图,∵EF⊥AB,DG⊥BC,∴∠AEF=∠DGB=90°,∵∠ACB=90°,∠A=∠A,∴∠1=∠B,又∵∠1=∠2,∴∠B=∠2,∵∠B+∠BDG=90°,∴∠2+∠BDG=90°,∴∠CDB=90°,∴∠ADC=90°.【题目点拨】本题考查了三角形内角和定理,余角的性质,解题的关键是找到∠B,通过∠1、∠2与∠B的关系推出结论.23、(1)见解析;(2)1.5【分析】(1)利用基本作法作BP平分∠ABC;(2)作辅助线PD⊥BC,利用勾股定理求BC,再利用角平分线的性质得AP=PD,再通过在中,利用勾股定理:,列出等式求出PD,即可求出AP.【题目详解】(1)如图(2)过点P作PD⊥BC于点D∵,∴BC=5∵BP平分,,PD⊥BC∴AP=PD∴△APB≌△APD∴AB=BD=3设AP=PD=,则PC=4-,CD=2在中:,即∴∴=1.5【题目点拨】本题考查了作图-基本作图:熟练掌握基本作图.也考查了全等、勾股定理性质的应用.24、解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)甲、乙单位购买本次足球赛门票分别为500张、200张.【分析】(1)根据题意可直接写出用x表示的总费用表达式;(2)根据方案一与方案二的函数关系式分类讨论;(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方案二:①a不超过100;②a超过100两种情况讨论a取值的合理性.从而确定求甲、乙两单位各购买门票数.【题目详解】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年武汉二手房交易中介服务协议一
- 2024年度商业房产交易合同(含商业空间改造及使用权协议)5篇
- 2024年度幼儿园家长志愿服务队组建与管理协议3篇
- 2024年农村农业(休闲农业经营与管理)技能及理论知识试题库含完整答案(全优)
- 2024版儿童户外运动塑胶玩具设计与销售合作协议2篇
- 2024版ISO9000质量认证咨询与质量管理体系优化升级及培训合同5篇
- 2024版二手房交易定金合同签订要点与法律风险评估及预防3篇
- 2025版高考英语一轮总复习专题检测十四完形填空
- 2024年新房购买意向书
- 北京市丰台区2024-2025学年高一语文上学期期中试题含解析
- 抖音快手区别分析报告
- 全生命周期成本管理与优化
- 质量损失培训课件
- 《维修车间管理》课件
- 北京市海淀区101中学2023年数学七年级第一学期期末经典试题含解析
- 高处作业吊篮危险源辨识及风险评价表
- 房地产开发项目 水土保持方案
- 八年级历史上册 第一学期期末考试卷(人教福建版)
- 人教版高中必修一(教案)Unit-2-Travelling-Around-Discovering-U
- 陈赫贾玲小品《欢喜密探》台词剧本
- 部编版语文九年级下册-第三单元古诗文默写-理解性默写(排版-附答案)
评论
0/150
提交评论