广东省深圳市龙岗区石芽岭学校2024届数学八上期末经典模拟试题含解析_第1页
广东省深圳市龙岗区石芽岭学校2024届数学八上期末经典模拟试题含解析_第2页
广东省深圳市龙岗区石芽岭学校2024届数学八上期末经典模拟试题含解析_第3页
广东省深圳市龙岗区石芽岭学校2024届数学八上期末经典模拟试题含解析_第4页
广东省深圳市龙岗区石芽岭学校2024届数学八上期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市龙岗区石芽岭学校2024届数学八上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.把分式的分子与分母各项系数化为整数,得到的正确结果是()A. B. C. D.2.下列电视台的台标中,是轴对称图形的是()A. B. C. D.3.若关于的方程的解为正数,则的取值范围是()A. B. C.且 D.且4.若实数x,y,z满足,则下列式子一定成立的是()A.x+y+z=0 B.x+y-2z=0 C.y+z-2x=0 D.z+x-2y=05.若是三角形的三边长,则式子的值(

).A.小于0 B.等于0 C.大于0 D.不能确定6.如图,若,,添加下列条件不能直接判定的是()A. B.C. D.7.若三角形两边长分别是4、5,则周长c的范围是()A.1<c<9 B.9<c<14 C.10<c<18 D.无法确定8.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k<3 B.k>3 C.k>0 D.k<09.下列图形中,为轴对称图形的是()A. B. C. D.10.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.11.关于的分式方程有整数解,关于的不等式组无解,所有满足条件的整数的和为()A.2 B.-6 C.-3 D.412.立方根等于本身的数是()A.-1 B.0 C.±1 D.±1或0二、填空题(每题4分,共24分)13.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为_______度.14.分解因式:_________.15.若式子有意义,则x的取值范围是.16.如图,在△ABC中,D是BC上的点,且AB=AC,BD=AD,AC=DC,那么∠B=_____.17.如图,中,,为的角平分线,与相交于点,若,,则的面积是_____.18.如图,这是一个供滑板爱好者使用的型池的示意图,该型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为的半圆,其边缘,点在上,,一滑板爱好者从点滑到点,则他滑行的最短距离约为_________.(边缘部分的厚度忽略不计)三、解答题(共78分)19.(8分)已知a,b,c为△ABC的三边长,且.(1)求a,b值;(2)若△ABC是等腰三角形,求△ABC的周长.20.(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,小宇根据他们的成绩(单位:环)绘制了如下尚不完整的统计表:第1次第2次第3次第4次第5次甲成绩947a6乙成绩75747(1)若甲成绩的平均数为6环,求a的值;(2)若甲成绩的方差为3.6,请计算乙成绩的方差并说明谁的成绩更稳定?21.(8分)在如图所示的平面直角坐标系中,网格小正方形的边长为1.(1)作出关于轴对称的,并写出点的坐标;(2)是轴上的动点,利用直尺在图中找出使周长最短时的点,保留作图痕迹,此时点的坐标是______22.(10分)(1)计算:(2x﹣3)(﹣2x﹣3)(2)计算:102223.(10分)如图1,△ABC中,AD是∠BAC的角平分线,AE⊥BC于点E.(1)若∠C=80°,∠B=40°,求∠DAE的度数;(2)若∠C>∠B,试说明∠DAE=(∠C-∠B);(3)如图2,若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,请直接回答:(2)中的结论还正确吗?24.(10分)如图,已知直线与直线、分别交于点、,点在上,点在上,,,求证:.25.(12分)学校到--家文具店给九年级学生购买考试用文具包,该文具店规一次购买个以上,可享受八折优惠.若给九年级学生每人购买一个,则不能享受八折优惠,需付款元;若再多买个就可享受八折优惠,并且同样只需付款元.求该校九年级学生的总人数.(列分式方程解答)26.已知点D为内部(包括边界但非A、B、C)上的一点.(1)若点D在边AC上,如图①,求证:AB+AC>BD+DC(2)若点D在内,如图②,求证:AB+AC>BD+DC(3)若点D在内,连结DA、DB、DC,如图③求证:(AB+BC+AC)<DA+DB+DC<AB+BC+AC

参考答案一、选择题(每题4分,共48分)1、B【分析】只要将分子分母要同时乘以12,分式各项的系数就可都化为整数.【题目详解】解:不改变分值,如果把其分子和分母中的各项的系数都化为整数,则分子分母要同时乘以12,即分式=故选B.【题目点拨】解答此类题一定要熟练掌握分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变.2、A【解题分析】B,C,D不是轴对称图形,A是轴对称图形.故选A.3、D【题目详解】去分母得,m﹣1=2x﹣2,解得,x=,∵方程的解是正数,∴>0,解这个不等式得,m>﹣1,∵m=1时不符合题意,∴m≠1,则m的取值范围是m>﹣1且m≠1.故选D.【题目点拨】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.要注意分母不能为0,这个条件经常忘掉.4、D【解题分析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=1,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=1,∴x2+z2+2xz﹣4xy+4y2﹣4yz=1,∴(x+z)2﹣4y(x+z)+4y2=1,∴(x+z﹣2y)2=1,∴z+x﹣2y=1.故选D.5、A【分析】先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.【题目详解】解:=(a-b+c)(a-b-c)根据三角形两边之和大于第三边,两边之差小于第三边,(a-c+b)(a-c-b)<0故选A.【题目点拨】本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.6、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL,结合选项进行判定,然后选择不能判定全等的选项.【题目详解】A、添加条件AM=CN,仅满足SSA,不能判定两个三角形全等;

B、添加条件AB=CD,可用SAS判定△ABM≌△CDN;

C、添加条件∠M=∠N,可用ASA判定△ABM≌△CDN;

D、添加条件∠A=∠NCD,可用AAS判定△ABM≌△CDN.

故选:A.【题目点拨】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、C【解题分析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边,∴5-4<第三边<5+4,∴10<c<18.故选C.8、A【解题分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【题目详解】解:∵一次函数y=(k-1)x-1的图象不经过第一象限,且b=-1,

∴一次函数y=(k-1)x-1的图象经过第二、三、四象限,

∴k-1<0,

解得k<1.

故选A.【题目点拨】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9、D【分析】根据轴对称图形的定义即可判断.【题目详解】A是中心对称图形,不是轴对称图形;B不是轴对称图形;C不是轴对称图形,没有对称轴;D是轴对称图形,故选D.【题目点拨】此题主要考查轴对称图形的定义,解题的关键是熟知轴对称图形的定义.10、D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.【题目点拨】本题考查了轴对称图形与中心对称的概念,熟悉基本概念及判断方法是解题的关键.11、A【分析】求出分式方程的解,由分式方程有整数解,得到整数a的取值;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的和.【题目详解】分式方程去分母得:1-ax+4(x-3)=﹣5,解得:x=,∵x≠3,∴≠3,解得:a≠1.由分式方程的解为整数,且a为整数,得到4-a=±1,±1,±3,±6,解得:a=3,5,1,6,7,1,2,-1.∵a≠1,∴a=-1,1,3,5,6,7,2.解不等式组,得到:.∵不等式组无解,∴,解得:a≤3.∴满足条件的整数a的值为﹣1,1,3,∴整数a之和是-1+1+3=1.故选:A.【题目点拨】本题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解答本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.12、D【分析】根据立方根的定义得到立方根等于本身的数.【题目详解】解:∵立方根是它本身有3个,分别是±1,1.故选:D.【题目点拨】本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3个,分别是±1,1.立方根的性质:(1)正数的立方根是正数.(2)负数的立方根是负数.(3)1的立方根是1.二、填空题(每题4分,共24分)13、15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF,EC⊥CF知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【题目详解】∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.【题目点拨】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.14、【分析】先将原式写成平方差公式的形式,然后运用平方差公式因式分解即可.【题目详解】解:===.【题目点拨】本题主要考查了运用平方差公式因式分解,将原式写成平方差公式的形式成为解答本题的关键.15、且【题目详解】∵式子在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.16、36°【分析】先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据AC=CD可知∠ADC=∠CAD=2x,再在△ACD中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值即可.【题目详解】解:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵AC=CD,∴∠ADC=∠CAD=2x,在△ACD中,∠C=x,∠ADC=∠CAD=2x,∴x+2x+2x=180°,解得x=36°.∴∠B=36°.故答案为:36°.【题目点拨】本题考查了等腰三角形等边等角的性质,三角形外角的性质,三角形内角和定理,掌握等腰三角形的性质是解题的关键.17、1【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算,得到答案.【题目详解】作DE⊥AB于E.∵AD为∠BAC的角平分线,∠C=90°,DE⊥AB,∴DE=DC=3,∴△ABD的面积AB×DE10×3=1.故答案为:1.【题目点拨】本题考查了角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18、25【分析】滑行的距离最短,即是沿着AE的线段滑行,我们可将半圆展开为矩形来研究,展开后,A、D、E三点构成直角三角形,AE为斜边,AD和DE为直角边,写出AD和DE的长,根据题意,写出勾股定理等式,代入数据即可得出AE的距离.【题目详解】将半圆面展开可得:AD=米,DE=DC-CE=AB-CE=20-5=15米,在Rt△ADE中,米,即滑行的最短距离为25米,故答案为:25.【题目点拨】此题考查了学生对问题简单处理的能力;直接求是求不出的,所以要将半圆展开,利用已学的知识来解决这个问题.三、解答题(共78分)19、(1);(2)1.【分析】已知等式配方后,利用非负数的性质求出a与b的值,即可确定出三角形周长.【题目详解】解:(1)∵,

∴,

∴,

∴,,

∴,,

(2)∵是等腰三角形,∴底边长为3或6,由三角形三边关系可知,底边长为3,

∴的周长为,

即的周长为1.【题目点拨】此题考查了因式分解的应用,三角形三边关系的应用,熟练掌握完全平方公式是解本题的关键.20、(1)a=1;(2)乙的成绩更稳定【分析】(1)利用平均数列出方程进行解答即可;(2)算出乙成绩的平均数以及乙成绩的方差,与甲成绩的平均数以及甲成绩的方差,进行比较即可.【题目详解】解:(1)(9+1+7+a+2)=2,∴a=1.(2)乙成绩的平均数是×(7+5+7+1+7)=2.乙成绩的方差是:.∵3.2>1.2∴乙的成绩更稳定.【题目点拨】本题考查了求平均数和方差,以及利用方差做判断,方差越小,数据的波动越小,更稳定.21、(1)见解析,;(2)见解析,【分析】(1)分别作出点A,B,C关于轴的对应点A′,B′,C′,再顺次连接即可.

(2)作点A′关于x轴的对称点A″,连接BA″交x轴于P,点P即为所求.【题目详解】解:(1)如图所示,即为所求,点;(2)如图所示,点即为所求.【题目点拨】本题考查作图−轴对称变换,轴对称−最短问题等知识,熟知关于y轴对称的点的坐标特点是解答此题的关键.22、(1)9﹣4x2;(2)1【分析】(1)根据平方差公式计算即可;(2)根据完全平方公式计算即可.【题目详解】解:(1)(2x﹣3)(﹣2x﹣3)=(-3)2﹣(2x)2=9﹣4x2;(2)1022=(100+2)2=1002+2×100×2+22=10000+400+4=1.【题目点拨】本题主要考查了平方差公式和完全平方公式,熟记公式是解答本题的关键.23、(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求得∠BAD的度数,在△ABE中,利用直角三角形的性质求出∠BAE的度数,从而可得∠DAE的度数.

(2)结合第(1)小题的计算过程进行证明即可.

(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B和∠C表示出∠A′DE,再根据三角形的内角和定理可证明∠DA′E=(∠C-∠B).【题目详解】(1)∵∠C=80°,∠B=40°,∴∠BAC=180°-∠B-∠C=180°-40°-80°=60°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=∠BAC=30°,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD=20°;(2)理由:∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=90°-∠B,∴∠DAE=∠BAE-∠BAD=(90°-∠B)-(90°-∠B-∠C)=∠C-∠B=(∠C-∠B);(3)(2)中的结论仍正确.

∵∠A′DE=∠B+∠BAD=∠B+∠BAC=∠B+(180°-∠B-∠C)=90°+∠B-∠C;在△DA′E中,∠DA′E=180°-∠A′ED-∠A′DE=180°-90°-(90°+∠B-∠C)=(∠C-∠B).【题目点拨】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.24、证明见详解【分析】由题意易得∠1=∠AFB=∠2,则有DM∥BN,进而可得∠B=∠AMD,则问题可得证.【题目详解】证明:,,∠1=∠AFB=∠2,DM∥BN,∠B=∠AMD,,,.【题目点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.25、该校九年级学生的总人数是人.【分析】首先设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款2520元”可得每个文具包的花费是元,根据“若多买70个,就可享受8折优惠,同样只需付款2520元”可得每个文具包的花费是元,根据题意可得方程即可【题目详解】解:设该校九年级学生的总人数是人,由题意得,解得:,经检验:是原分式方程的解,且符合题意.答:该校九年级学生的总人数是人.【题目点拨】此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论