湖北省武汉市武昌七校2024届八上数学期末达标检测模拟试题含解析_第1页
湖北省武汉市武昌七校2024届八上数学期末达标检测模拟试题含解析_第2页
湖北省武汉市武昌七校2024届八上数学期末达标检测模拟试题含解析_第3页
湖北省武汉市武昌七校2024届八上数学期末达标检测模拟试题含解析_第4页
湖北省武汉市武昌七校2024届八上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市武昌七校2024届八上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列四个多项式中,能因式分解的是()A. B. C. D.2.如图,在数轴上数表示,的对应点分别是、,是的中点,则点表示的数()A. B. C. D.3.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.4.在中,,则的长为()A.2 B. C.4 D.4或5.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.6.下列代数式中,是分式的为()A. B. C. D.7.现有甲,乙两个工程队分别同时开挖两条600m长的隧道,所挖遂道长度y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是()A.甲队每天挖100mB.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当时,甲、乙两队所挖管道长度相同8.函数,则的值为()A.0 B.2 C.4 D.89.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形10.当x时,分式的值为0()A.x≠- B.x=- C.x≠2 D.x=2二、填空题(每小题3分,共24分)11.已知(x-2018)2=15,则(x-2017)2+(x-2019)2的值是_________12.若分式方程=a无解,则a的值为________.13.一个等腰三角形的两边长分别为5或6,则这个等腰三角形的周长是.14.要使分式有意义,则x应满足条件____.15.计算的结果为________.16.因式分解:x3﹣2x2+x=.17.在平面直角坐标系中,点关于轴对称的点的坐标为______.18.如果有:,则=____.三、解答题(共66分)19.(10分)如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC.(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使△BPN的面积等于△BCM面积的?若存在,请求出点N的坐标;若不存在,请说明理由.20.(6分)如图,AD

△ABC

的角平分线,DE⊥AB

于点

E,DF⊥AC

于点

F,连接

EF

AD

于点

O.(1)求证:AD垂直平分EF;(2)若∠BAC=,写出DO与AD之间的数量关系,不需证明.21.(6分)如图,在平面直角坐标系中,三个顶点坐标分别为,,.(1)关于轴对称的图形(其中,,分别是,,的对称点),请写出点,,的坐标;(2)若直线过点,且直线轴,请在图中画出关于直线对称的图形(其中,,分别是,,的对称点,不写画法),并写出点,,的坐标;22.(8分)已知,,求下列式子的值:(1);(2)23.(8分)在边长为1的小正方形网格中,的顶点均在格点上,(1)点关于轴的对称点坐标为;(2)将向左平移3个单位长度得到,请画出,求出的坐标;(3)求出的面积.24.(8分)如图,点、是线段上的点,,,垂足分别是点和点,,,求证:.25.(10分)下面方格网的小方格是正方形,用无刻度直尺按要求作图:(1)在图1中作直角∠ABC;(2)在图2作AB的中垂线.26.(10分)小明在学了尺规作图后,通过“三弧法”作了一个,其作法步骤是:①作线段,分别以为圆心,取长为半径画弧,两弧的交点为C;②以B为圆心,长为半径画弧交的延长线于点D;③连结.画完后小明说他画的的是直角三角形,你认同他的说法吗,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据因式分解的定义逐项判定即可.【题目详解】解:A.,无法因式分解,不符合题意;B.,符合题意;C.,无法因式分解,不符合题意;D.,无法因式分解,不符合题意;故答案为B.【题目点拨】本题主要考查了因式分解的定义,因式分解是把一个多项式转化成几个整式积的形式.2、C【分析】先求出线段BC的长,然后利用中点的性质即可解答;【题目详解】∵C点表示,B点表示2,∴,又∵是的中点,∴,点A表示的数为.故选:C.【题目点拨】本题主要考查了实数与数轴的知识点,准确计算是解题的关键.3、C【解题分析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.4、D【分析】分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【题目详解】解:当b是斜边时,c=,当b是直角边时,c=,则c=4或,故选:D.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.5、A【解题分析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.6、B【解题分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】这个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【题目点拨】本题考查了分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.7、D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【题目详解】解:由图象,得600÷6=100米/天,故A正确;(500-300)÷4=50米/天,故B正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D错误;故选:D.【题目点拨】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.8、C【分析】根据二次根式有意义的条件可得出x,y的值,再代入中即可求解.【题目详解】解:∵,,∴,故x=2,∴y=2,∴故答案为:C.【题目点拨】本题考查了二次根式有意义的条件,解题的关键是得出x,y的值.9、C【分析】此题可以利用多边形的外角和和内角和定理求解.【题目详解】解:设所求多边形边数为n,由题意得(n﹣2)•180°=310°×2解得n=1.则这个多边形是六边形.故选C.【题目点拨】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.10、D【分析】分式的值为的条件是:(1)分子等于零;(2)分母不等于零.两个条件需同时具备,缺一不可.据此可以解答本题.【题目详解】解:∵分式的值为∴∴.故选:D【题目点拨】本题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为这个条件.二、填空题(每小题3分,共24分)11、1【分析】将变形为,将看作一个整体,利用完全平方公式展开后再代入已知条件即可.【题目详解】解:∵∴展开得:∵∴原式故答案为:1.【题目点拨】本题考查的知识点是整式的化简求值以及完全平方公式的应用,掌握完全平方公式的内容是解此题的关键.12、1或-1【分析】根据分式方程无解,得到最简公分母为2求出x的值,分式方程转化为整式方程,把x的值代入计算即可.【题目详解】解:去分母:即:.显然a=1时,方程无解.由分式方程无解,得到x+1=2,即:x=-1.把x=-1代入整式方程:-a+1=-2a.解得:a=-1.综上:a的值为1或者-1.【题目点拨】本题考查了分式方程的解,需要注意在任何时候考虑分母不能够为2.13、16或1.【解题分析】由于未说明两边哪个是腰哪个是底,故需分两种情况讨论:(1)当等腰三角形的腰为5,底为6时,周长为5+5+6=16;(2)当等腰三角形的腰为6,底为5时,周长为5+6+6=1.∴这个等腰三角形的周长是16或1.14、x≠1.【分析】当分式的分母不为零时,分式有意义,即x−1≠2.【题目详解】当x﹣1≠2时,分式有意义,∴x≠1.故答案为:x≠1.【题目点拨】本题考查分式有意义的条件;熟练掌握分式分母不为零时,分式有意义是解题的关键.15、【分析】先把分式进行整理,然后进行计算,即可得到答案.【题目详解】解:;故答案为:.【题目点拨】本题考查了分式的加减运算,解题的关键是掌握运算法则进行解题.16、【解题分析】试题分析:先提公因式x,再用完全平方公式分解即可,所以.考点:因式分解.17、【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【题目详解】解:点P(﹣8,7)关于x轴对称的点的坐标为(﹣8,﹣7),故答案为:(﹣8,﹣7).【题目点拨】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.18、1【分析】根据算术平方根和绝对值的非负性即可求解.【题目详解】解:由题意可知:,且,而它们相加为0,故只能是且,∴,∴,故答案为:1.【题目点拨】本题考查了算术平方根的非负性,绝对值的非负性,熟练掌握算术平方根的概念及绝对值的概念是解决本题的关键.三、解答题(共66分)19、(1)C(﹣3,1),直线AC:y=x+2;(2)证明见解析;(3)N(﹣,0).【分析】(1)作CQ⊥x轴,垂足为Q,根据条件证明△ABO≌△BCQ,从而求出CQ=OB=1,可得C(﹣3,1),用待定系数法可求直线AC的解析式y=x+2;(2)作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,证明△BCH≌△BDF,△BOE≌△DGE,可得BE=DE;(3)先求出直线BC的解析式,从而确定点P的坐标,假设存在点N使△BPN的面积等于△BCM面积的,然后可求出BN的长,比较BM,BN的大小,判断点N是否在线段BM上即可.【题目详解】解:(1)如图1,作CQ⊥x轴,垂足为Q,∴∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∵BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∵BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∵DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=,则BN·×,∴BN=,ON=,∴BN<BM,∴点N在线段BM上,∴N(﹣,0).考点:1.等腰直角三角形的性质;2.全等三角形的判定与性质;3.待定系数法求解析式.20、(1)见解析;(2)【解题分析】试题分析:(1)由AD为△ABC的角平分线,得到DE=DF,推出∠AEF和∠AFE相等,得到AE=AF,即可推出结论;(2)由已知推出∠EAD=30°,得到AD=2DE,在△DEO中,由∠DEO=30°推出DE=2DO,即可推出结论.试题解析:(1)∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF,∴点A、D都在EF的垂直平分线上,∴AD垂直平分EF.(2),理由:∵∠BAC=60°,AD平分∠BAC,∴∠EAD=30°,∴AD=2DE,∠EDA=60°,∵AD⊥EF,∴∠EOD=90°,∴∠DEO=30°∴DE=2DO,∴AD=4DO,∴.【题目点拨】本题主要考查了角平分线的性质,线段垂直平分线的性质,含30°角的直角三角形的性质等知识点,解此题的关键是(1)证AE=AF和DE=DF;(2)证AD=2DE和DE=2DO.21、(1),,;(2)图详见解析,,,【分析】(1)由题意利用作轴对称图形的方法技巧作图并写出点,,的坐标即可;(2)根据题意作出直线,并利用作轴对称图形的方法技巧画出关于直线对称的图形以及写出点,,的坐标即可.【题目详解】解,(1)作图如下:由图可知,,;(2)如图所示:由图可知为所求:,,.【题目点拨】本题考查轴对称变换,熟练掌握并利用关于y轴对称的点的坐标特点是解答此题的关键.22、(1)-4;(2)21【分析】(1)根据a,b的值求出a+b,ab的值,再根据a2+b2=(a+b)2-2ab,代入计算即可;(2)根据(1)得出的a+b,ab的值,再根据代入计算即可.【题目详解】(1)∵,,∴,,∴(2)由(1)得,,∴【题目点拨】此题考查了二次根式的化简求值,用到的知识点是二次根式的性质、完全平方公式、平方差公式,关键是对要求的式子进行化简.23、(1)点关于轴的对称点坐标为;(2)图详见解析,的坐标为;(3)【分析】(1)关于轴对称的两点横坐标互为相反数,纵坐标相等即得;(2)先找出关键点,再将关键点向左平移3个单位长度并顺次连接即得,最后根据图即得的坐标;(3)将填充成梯形并求出面积,再将梯形面积减去增加部分即得.【题目详解】解:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论