2024届新疆库尔勒市14中学八上数学期末综合测试模拟试题含解析_第1页
2024届新疆库尔勒市14中学八上数学期末综合测试模拟试题含解析_第2页
2024届新疆库尔勒市14中学八上数学期末综合测试模拟试题含解析_第3页
2024届新疆库尔勒市14中学八上数学期末综合测试模拟试题含解析_第4页
2024届新疆库尔勒市14中学八上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届新疆库尔勒市14中学八上数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为()A.3 B.2 C. D.2.在实数,,,,中,无理数有()A.1个 B.2个 C.3个 D.4个3.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. B. C. D.4.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65° B.95° C.45° D.85°5.下列各数中是无理数的是()A.﹣1 B.3.1415 C.π D.6.下列各式中,从左到右的变形是因式分解的是()A.3x+3y+1=3(x+y)+1 B.a2﹣2a+1=(a﹣1)2C.(m+n)(m﹣n)=m2﹣n2 D.x(x﹣y)=x2﹣xy7.已知是整数,点在第四象限,则的值是()A. B.0 C.1 D.28.化简的结果是()A. B. C. D.9.下列计算正确的是()A.a2+a3=a5 B.(a2)3=a6 C.a6÷a2=a3 D.2a×3a=6a10.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,中,,,为线段上一动点(不与点,重合),连接,作,交线段于.以下四个结论:①;②当为中点时;③当时;④当为等腰三角形时.其中正确的结论是_________(把你认为正确结论的序号都填上)12.我们知道,实数与数轴上的点是一一对应的,任意一个实数在数轴上都能找到与之对应的点,比如我们可以在数轴上找到与数字2对应的点.(1)在如图所示的数轴上,画出一个你喜欢的无理数,并用点表示;(2)(1)中所取点表示的数字是______,相反数是_____,绝对值是______,倒数是_____,其到点5的距离是______.(3)取原点为,表示数字1的点为,将(1)中点向左平移2个单位长度,再取其关于点的对称点,求的长.13.如图,AD是△ABC的中线,∠ADC=30°,把△ADC沿着直线AD翻折,点C落在点E的位置,如果BC=2,那么线段BE的长度为____________14.如图,正方形ODBC中,OB=,OA=OB,则数轴上点A表示的数是__________.15.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角分线.若在边AB上截取BE=BC,连接DE,则图中共有_________个等腰三角形.16.如图,长方形ABCD中,AD=8,AB=4,BQ=5,点P在AD边上运动,当为等腰三角形时,AP的长为_____.17.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.18.如图,等腰直角中,,为的中点,,为上的一个动点,当点运动时,的最小值为____三、解答题(共66分)19.(10分)阅读材料:解分式不等式<1解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解;解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列不等式:(1)(2)(x+2)(2x﹣6)>1.20.(6分)先化简,再求值:,其中满足21.(6分)一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后速度提高匀速行驶,并比原计划提前到达目的地,求前一小时的行驶速度.22.(8分)如图1,在平面直角坐标系中,点A(0,3),点B(-1,0),点D(2,0),DE⊥x轴且∠BED=∠ABD,延长AE交x轴于点F.(1)求证:∠BAE=∠BEA;(2)求点F的坐标;(3)如图2,若点Q(m,-1)在第四象限,点M在y轴的正半轴上,∠MEQ=∠OAF,设AM-MQ=n,求m与n的数量关系,并证明.23.(8分)小山同学结合学习一次函数的经验和自己的思考,按以下方式探究函数的图象与性质,并尝试解决相关问题.请将以下过程补充完整:(1)判断这个函数的自变量x的取值范围是________________;(2)补全表格:(3)在平面直角坐标系中画出函数的图象:(4)填空:当时,相应的函数解析式为___(用不含绝对值符合的式子表示);(5)写出直线与函数的图象的交点坐标.24.(8分)(1)用简便方法计算:20202﹣20192(2)化简:[(x﹣y)2+(x+y)(x﹣y)]÷2x25.(10分)已知:直线,为图形内一点,连接,.(1)如图①,写出,,之间的等量关系,并证明你的结论;(2)如图②,请直接写出,,之间的关系式;(3)你还能就本题作出什么新的猜想?请画图并写出你的结论(不必证明).26.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.

参考答案一、选择题(每小题3分,共30分)1、D【分析】设点C的横坐标为m,则点C的坐标为(m,﹣3m),点B的坐标为(﹣,﹣3m),根据正方形的性质,即可得出关于k的分式方程,解之经检验后即可得出结论.【题目详解】解:设点C的横坐标为m,∵点C在直线y=-3x上,∴点C的坐标为(m,﹣3m),∵四边形ABCD为正方形,∴BC∥x轴,BC=AB,又点B在直线y=kx上,且点B的纵坐标与点C的纵坐标相等,∴点B的坐标为(﹣,﹣3m),∴﹣﹣m=﹣3m,解得:k=,经检验,k=是原方程的解,且符合题意.故选:D.【题目点拨】本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键.2、B【题目详解】解:在实数,,,,中,其中,,是无理数.故选:B.3、C【题目详解】根据平角和直角定义,得方程x+y=90;根据∠3比∠3的度数大3°,得方程x=y+3.可列方程组为,故选C.考点:3.由实际问题抽象出二元一次方程组;3.余角和补角.4、B【分析】根据OA=OB,OC=OD证明△ODB≌△OCA,得到∠OAC=∠OBD,再根据∠O=50°,∠D=35°即可得答案.【题目详解】解:OA=OB,OC=OD,在△ODB和△OCA中,∴△ODB≌△OCA(SAS),∠OAC=∠OBD=180°-50°-35°=95°,故B为答案.【题目点拨】本题考查了全等三角形的判定、全等三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.5、C【分析】根据有理数与无理数的定义求解即可.【题目详解】解:﹣1是整数,属于有理数,故选项A不合题意;3.1415是有限小数,属于有理数,故选项B不合题意;π是无限不循环小数,属于无理数,故选项C符合题意;是分数,属于有理数,故选项D不合题意.故选:C.【题目点拨】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6、B【分析】根据因式分解的意义,可得答案.【题目详解】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、是整式的乘法,故D错误;故选:B.【题目点拨】把多项式化为几个整式的积的形式,即是因式分解7、C【分析】根据第四象限内的点的坐标特征:横坐标>0,纵坐标<0,列出不等式,即可判断.【题目详解】解:∵点在第四象限,∴解得:∵是整数,∴故选C.【题目点拨】此题考查的是根据点所在的象限,求坐标中参数的取值范围,掌握各个象限内的点的坐标特征是解决此题的关键.8、A【分析】先通分,然后根据分式的加法法则计算即可.【题目详解】解:===故选A.【题目点拨】此题考查的是分式的加法运算,掌握分式的加法法则是解决此题的关键.9、B【解题分析】根据合并同类项、幂的乘方与积的乘方、同底数幂的乘法及除法法则进行计算即可.【题目详解】A、错误,a1与a3不是同类项,不能合并;B、正确,(a1)3=a6,符合积的乘方法则;C、错误,应为a6÷a1=a4;D、错误,应为1a×3a=6a1.故选B.【题目点拨】本题考查了合并同类项,同底数的幂的乘法与除法,幂的乘方,单项式的乘法,熟练掌握运算性质是解题的关键.10、A【解题分析】试题分析:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.考点:剪纸问题.二、填空题(每小题3分,共24分)11、①②③【分析】利用三角形外角的性质可判断①;利用等腰三角形三线合一的性质得到∠ADC=90,求得∠EDC=50,可判断②;利用三角形内角和定理求得∠DAC=70=∠DEA,证得DA=DE,可证得,可判断③;当为等腰三角形可分类讨论,可判断④.【题目详解】①∠ADC是的一个外角,∴∠ADC=∠B+∠BAD=40+∠BAD,又∠ADC=40+∠CDE,∴∠CDE=∠BAD,故①正确;②∵,为中点,∴,AD⊥BC,∴∠ADC=90,∴∠EDC=90,∴,∴DE⊥AC,故②正确;③当时由①得∠CDE=∠BAD,在中,∠DAC=,在中,∠AED=,∴DA=ED,在和中,,∴,∴,故③正确;④当AD=AE时,∠AED=∠ADE=40°,

∴∠AED=∠C=40°,则DE∥BC,不符合题意舍去;当AD=ED时,∠DAE=∠DEA,同③,;当AE=DE时,∠DAE=∠ADE=40°,

∴∠BAD,

∴当△ADE是等腰三角形时,

∴∠BAD的度数为30°或60°,故④错误;综上,①②③正确,故答案为:①②③【题目点拨】此题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质,三角形的内角和公式,掌握全等三角形的判定定理和性质定理、灵活运用分类讨论思想是解题的关键.12、(1)见解析;(2)(答案不唯一);(3)(答案不唯一).【分析】(1)先在数轴上以原点为起始点,以某个单位长度的长为边长画正方形,再连接正方形的对角线,以对角线为半径,原点为圆心画弧即可在数轴上得到一个无理数;(2)根据(1)中的作图可得出无理数的值,然后根据相反数,绝对值,倒数的概念以及点与点间的距离概念作答;(3)先在数轴上作出点A平移后得到的点A′,点B,点C,再利用对称性及数轴上两点间的距离的定义,可求出CO的长.【题目详解】解:(1)如图所示:(答案不唯一)(2)由(1)作图可知,点表示的数字是,相反数是-,绝对值是,倒数是,其到点5的距离是5-,故答案为:(答案不唯一)(3)如图,将点向左平移2个单位长度,得到点,则点表示的数字为,关于点的对称点为,点表示的数字为1,∴A′B=BC=1-()=3-,∴A′C=2A′B=6-,∴CO=OA′+A′C=+6-=4-,即CO的长为.(答案不唯一)【题目点拨】本题考查无理数在数轴上的表示方法,数轴上两点间的距离的求法,勾股定理以及相反数、绝对值、倒数的概念,掌握基本概念是解题的关键.13、【分析】根据折叠的性质判定△EDC是等边三角形,然后再利用Rt△BEC求BE.【题目详解】解:连接,是的中线,且沿着直线翻折,,是等腰三角形,,,为等边三角形,,在中,,【题目点拨】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等边三角形的性质求解.14、【解题分析】∵OB=,∴OA=OB=,∵点A在数轴上原点的左边,∴点A表示的数是−,故答案为:−.15、1.【解题分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【题目详解】∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°−∠DBC−∠C=180°−36°−72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°−36°)÷2=72°,∴∠ADE=∠BED−∠A=72°−36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有1个.故答案为1.考点:等腰三角形的判定16、3或或2或1【分析】根据矩形的性质可得∠A=90°,BC=AD=1,然后根据等腰三角形腰的情况分类讨论,根据勾股定理和垂直平分线等知识即可求解.【题目详解】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD=1,分三种情况:①BP=BQ=5时,AP===3;②当PB=PQ时,作PM⊥BC于M,则点P在BQ的垂直平分线时,如图所示:∴AP=BQ=;③当QP=QB=5时,作QE⊥AD于E,如图所示:则四边形ABQE是矩形,∴AE=BQ=5,QE=AB=4,∴PE===3,∴AP=AE﹣PE=5﹣3=2;④当点P和点D重合时,∵CQ=3,CD=4,∴根据勾股定理,PQ=5=BQ,此时AP=AD=1,综上所述,当为等腰三角形时,AP的长为3或或2或1;故答案为:3或或2或1.【题目点拨】此题考查的是矩形的性质、等腰三角形的性质和勾股定理,掌握矩形的性质、等腰三角形的性质、分类讨论的数学思想和勾股定理是解题关键.17、1.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【题目详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案为1.【题目点拨】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.18、4【分析】作点C关于AB的对称点C′,连接DC′、BC′,连接DC′交AB于点P,由轴对称的性质易得EC=EC′,则线段DC′的长度即为PC+PD的最小值,由等腰直角三角形的性质易得∠CBC′=∠CBA+∠C′BA=90,在Rt△DBC′中,利用勾股定理即可求得线段DC′的长度,问题便可得以解决.【题目详解】∵,为的中点,,∴设CD=x,则AC=2x,∴x2+(2x)2=42解得x=,∴BD=CD=,BC=AC=如图所示,作点C关于AB的对称点C′,连接DC′、BC′,连接DC′交AB于点E.∵点C和点C′关于AB对称,∴PC=PC′,∠CBA=∠C′BA,∴PC+PD=PC′+PD=DC′,此时PC+PD的长最小.∵△ABC是等腰直角三角形,AC=BC,∴∠CBC′=∠CBA+∠C′BA=45+45=90.∴在Rt△DBC′中,由勾股定理得DC′==,∴PC+PD的最小值为4.故答案为:4.【题目点拨】此题主要考查轴对称的性质,解题的关键是熟知等腰三角形的性质及勾股定理的应用.三、解答题(共66分)19、(1)-<x≤2;(2)x>3或x<﹣2【分析】(1)把分式不等式转化为不等式(组)即可解决问题.(2)把整式不等式转化为不等式(组)即可解决问题.【题目详解】(1)原不等式可转化为:①或②解①得无解,解②得﹣<x≤2,所以原不等式的解集是﹣<x≤2;(2)原不等式可转化为:①或②解①得x>3,解②得x<﹣2,所以原不等式的解集是x>3或x<﹣2.【题目点拨】本题考查解一元一次不等式组,分式不等式以及整式等知识,解题的关键是学会用转化的思想思考问题.20、原式【解题分析】先求出x、y的值,再把原式化简,最后代入求出即可.【题目详解】试题解析:原式,∵,∴,原式.21、.【分析】设前一小时的行驶速度为,则后来的速度为,根据他提前20分钟到达目的地,等量关系式为:加速后的时间+20分钟+1小时=原计划用的时间,列方程求解即可.【题目详解】设前一小时的行驶速度为,则后来的速度为,由题意得,,解得:,经检验:是原方程的解且符合题意,答:前一小时的行驶速度为.故答案为:【题目点拨】通过设前一小时的行驶速度,根据加速前后时间的等量关系列出方程,求解即可得出答案,注意加速后行驶的路程为150千米前一小时按原计划行驶的路程.22、(1)证明见解析;(2)F(3,0);(3)m=n,证明见解析.【分析】(1)先证明△ABO≌△BED,从而得出AB=BE,然后根据等边对等角可得出结论;(2)连接OE,设DF=x,先求出点E的坐标,再根据S△AOE+S△EOF=S△AOF可得出关于x的方程,求出x,从而可得出点F的坐标;(3)过Q作QP∥x轴交y轴于P,过E作EG⊥OA,EH⊥PQ,垂足分别为G,H,在GA上截取GK=QH,先证明△EQH≌△EKG,再证明△KEM≌△QEM,得出MK=MQ,从而有AM-MQ=AM-MK=AK=n①;连接EP,证明△AEK≌△PEQ,从而有AK=PQ=m②,由①②即可得出结论.【题目详解】解:(1)∵A(0,3),B(-1,0),D(2,0),∴OB=1,OD=2,OA=3,∴AO=BD,又∠AOB=∠BDE=90°,∠BED=∠ABD,∴△ABO≌△BED(AAS),∴BA=BE,∴∠BAE=∠BEA;(2)由(1)知,△ABO≌△BED,∴DE=BO=1,∴E(2,1),连接OE,设DF=x,∵S△AOE+S△EOF=S△AOF,∴3×2×+(2+x)×1×=3(2+x)×,∴x=1,∴点F的坐标为(3,0);(3)m=n,证明如下:∵OA=OF=3,∴∠OAF=45°=∠MEQ,过Q作QP∥x轴交y轴于P,过E作EG⊥OA,EH⊥PQ,垂足分别为G,H,在GA上截取GK=QH,∵Q(m,-1),E(2,1),∴EG=EH=PH=PG=2,又GK=QH,∠EGK=∠EQH=90°,∴△EQH≌△EKG(SAS),∴EK=EQ,∠GEK=∠HEQ,∵∠GEH=90°,∠MEQ=45°,∴∠QEH+∠GEM=45°,∴∠GEK+∠GEM=45°,即∠KEM=45°=∠MEQ,又EM=EM,∴△KEM≌△QEM(SAS),∴MK=MQ,∴AM-MQ=AM-MK=AK=n①,∴MQ=MG+KG=MG+QH.连接EP,△EHP为等腰直角三角形,∠EPH=45°,∴∠EPQ=∠EPA=45°,△EHP为等腰直角三角形,PE=AE,∠PEA=90°,∵∠KEM=∠MEQ=45°,∴∠KEQ=90°,∴∠AEK=∠PEQ,∠EPQ=∠KAE,∴△AEK≌△PEQ,∴AK=PQ=m②,由①②可得,m=n.【题目点拨】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质以及平面直角坐标系中求点的坐标与图形的面积问题等,第(3)小题的关键是作出辅助线构造全等三角形解决问题.23、(1)全体实数;(2)见解析;(3)见解析;(4);(5)【分析】(1)由函数解析式:可以得到自变量的取值范围,(2)利用函数解析式给出的自变量的值得出函数值可以得到答案.(3)根据自变量与函数值的对应值在平面直角坐标系中描好点并连线得到图像.(4)在的条件下去掉绝对值符号,得到函数解析式.(5)观察图像写出交点坐标即可.【题目详解】(1)因为:,所以函数自变量的取值范围是全体实数.(2)利用把分别代入解析式计算出函数的值填入下表:(3)描点并连线(见图5).(4)因为:,所以所以:(5)在同一直角坐标系中画出的图像,观察图像得交点为(如图6所示).【题目点拨】本题考查了一次函数图象上点的坐标特征,能熟记一次函数的图象和性质是解此题的关键.24、(1)4039;(2)x﹣y【分析】(1)利用平方差公式变形为(2020+2019)×(2020﹣2019),再进一步计算可得;(2)先分别利用完全平方公式和平方差公式计算括号内的,再计算除法可得.【题目详解】解:(1)原式=(2020+2019)×(2020﹣2019)=4039×1=4039;(2)原式.【题目点拨】本题主要考查了乘法公式的应用,解题的关键是熟练掌握整式的混合运算顺序和运算法则及完全平方公式、平方差公式.25、(1),见解析;(2);(3),见解析【分析】(1)如图①,延长交于点,根据两直线平行,内错角相等可得,再根据三角形外角的性质即可得解;(2)如图②中,过P作PG∥AB,利用平行线的性质即可解决问题;(3)如图③,在利用外角的性质以及两直线平行,内错角相等的性质,即可得出.【题目详解】证明:(1)如图①,延长交于点.在中则有.(三角形一个外角等于和它不相邻的两个内角的和)又,(两直线平行,内错角相等)..(图①)(图②)(2)如图②中,过P作PG∥AB,∵AB//CD∴PG//CD∵AB//PG∴∠ABP+∠BPG=180°∵PG//CD∴∠GPD+∠PDC=180°∴∠ABP+∠BPG+∠GPD+∠PDC=360°∴故答案为:.(3)如图③.证明如下:(图③)在中则有.(三角形一个外角等于和它不相邻的两个内角的和)又,(两直线平行,内错角相等).【题目点拨】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.26、(1)y=x+2;(2)3;(3)(﹣2,5)或(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论