初中数学七年级下册 期末测试卷(含答案)_第1页
初中数学七年级下册 期末测试卷(含答案)_第2页
初中数学七年级下册 期末测试卷(含答案)_第3页
初中数学七年级下册 期末测试卷(含答案)_第4页
初中数学七年级下册 期末测试卷(含答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)七年级(下)期末数学试卷一、选择题(在每小题给出的四个选项中,只有一项符合题目要求,.每个小题3分,共30分)1.(3分)下列运算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a5 D.(a3)2=a52.(3分)已知等腰三角形的一个角是100°,则它的顶角是()A.40° B.60° C.80° D.100°3.(3分)如图,计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是()A.两点之间线段最短 B.垂线段最短 C.过一点只能作一条直线 D.平面内,过一点有且只有一条直线与已知直线垂直4.(3分)如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣65.(3分)下列四个图形中,不能推出∠2与∠1相等的是()A. B. C. D.6.(3分)下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b) B.(x+2)(2+x) C.(+y)(y﹣) D.(x﹣2)(x+1)7.(3分)上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.8.(3分)如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是()A.∠C=∠D B.∠BAC=∠ABD C.BC=AD D.AC=BD9.(3分)计算(x﹣2)x=1,则x的值是()A.3 B.1 C.0 D.3或010.(3分)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28° B.34° C.46° D.56°二、填空题(每题3分,共15分)11.(3分)如图,要使AD∥BF,则需要添加的条件是(写一个即可)12.(3分)某水库的水位在5小时内持续上涨,初始的水位高度为4米,水位以每小时0.2米的速度匀速上涨,则水库的水位y(米)与上涨时间x(小时)(0≤x≤5)之间的函数表达式为.13.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.14.(3分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为个.15.(3分)如图,△ABC中,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,若∠DAE=28°,则∠BAC=°.三、解答题(共75分)16.(16分)(1)计算:﹣20+4﹣1×()﹣2(2)2016×2018﹣20172(3)(a+3)(a﹣1)﹣a(a﹣2)(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b17.(7分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣18.(8分)如图,已知E是AB上的点,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(6分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?21.(11分)小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校.我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了千米时,自行车“爆胎”修车用了分钟.(2)修车后小明骑车的速度为每小时千米.(3)小明离家分钟距家6千米.(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?22.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,(1)求证:△AEC≌△CDB;(2)求DE的长.23.(11分)探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的影部分的正方形的边长等于.(2)请用两种不同的方法求图b中阴影部分的面积.方法1:;方法2:(3)观察图b,请你写出下列三个代数式之间的等量关系.代数式:(m+n)2,(m﹣n)2,mn,(4)根据(3)题中的等量关系,解决如下问题:若2a+2b=14,ab=5,则(a﹣b)2=.

参考答案与试题解析一、选择题(在每小题给出的四个选项中,只有一项符合题目要求,.每个小题3分,共30分)1.(3分)下列运算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a5 D.(a3)2=a5【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则计算,判断即可.【解答】解:a3和a2不是同类项,不能合并,A错误;a3和a2不是同类项,不能合并,B错误;a3•a2=a5,C正确;(a3)2=a6,D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方,掌握相关的运算法则是解题的关键.2.(3分)已知等腰三角形的一个角是100°,则它的顶角是()A.40° B.60° C.80° D.100°【分析】等腰三角形一内角为100°,没说明是顶角还是底角,所以要分两种情况讨论求解.【解答】解:(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.3.(3分)如图,计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是()A.两点之间线段最短 B.垂线段最短 C.过一点只能作一条直线 D.平面内,过一点有且只有一条直线与已知直线垂直【分析】根据垂线段最短,可得答案.【解答】解:计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短,故选:B.【点评】本题考查了垂线段的性质,利用了垂线段的性质.4.(3分)如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣6【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p与q的值即可.【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+px+q,∴p=1,q=﹣6,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5.(3分)下列四个图形中,不能推出∠2与∠1相等的是()A. B. C. D.【分析】根据平行线的性质以及对顶角相等的性质进行判断.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.6.(3分)下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b) B.(x+2)(2+x) C.(+y)(y﹣) D.(x﹣2)(x+1)【分析】根据平方差公式即可求出答案.【解答】解:(A)原式=﹣(a﹣b)(a﹣b)=﹣(a﹣b)2,故A不能用平方差公式;(B)原式=(x+2)2,故B不能用平方差公式;(D)原式=x2﹣x+1,故D不能用平方差公式;故选:C.【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.7.(3分)上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.【分析】根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.【解答】解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选:B.【点评】本题考查了函数图象,根据距离的变化描述函数是解题关键.8.(3分)如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是()A.∠C=∠D B.∠BAC=∠ABD C.BC=AD D.AC=BD【分析】已有条件∠ABC=∠BAD再有公共边AB=AB,然后结合所给选项分别进行分析即可.【解答】解:A、添加∠C=∠D时,可利用AAS判定△ABC≌△BAD,故此选项不符合题意;B、添加∠BAC=∠ABD,根据ASA判定△ABC≌△BAD,故此选项不符合题意;C、添加AB=DC,根据SAS能判定△ABC≌△BAD,故此选项不符合题意;D、添加AC=DB,不能判定△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(3分)计算(x﹣2)x=1,则x的值是()A.3 B.1 C.0 D.3或0【分析】直接利用零指数幂的性质以及有理数的乘方运算法则化简得出答案.【解答】解:∵(x﹣2)x=1,当x﹣2=1时,得x=3,原式可以化简为:13=1,当次数x=0时,原式可化简为(﹣2)0=1,当底数为﹣1时,次数为1,得幂为﹣1,故舍去.故选:D.【点评】此题主要考查了零指数幂的性质和有理数的乘方运算,正确掌握运算法则是解题关键.10.(3分)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28° B.34° C.46° D.56°【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE﹣∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE﹣∠CFE=121°﹣87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.二、填空题(每题3分,共15分)11.(3分)如图,要使AD∥BF,则需要添加的条件是∠A=∠EBC(写一个即可)【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【解答】解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.12.(3分)某水库的水位在5小时内持续上涨,初始的水位高度为4米,水位以每小时0.2米的速度匀速上涨,则水库的水位y(米)与上涨时间x(小时)(0≤x≤5)之间的函数表达式为y=4+0.2x.【分析】根据高度等于速度乘以时间列出关系式解答即可.【解答】解:根据题意可得:y=4+0.2x(0≤x≤5),故答案为:y=4+0.2x.【点评】此题考查函数关系式,关键是根据题中水位以每小时0.2米的速度匀速上升列出关系式.13.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有3个.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC=AC,∴AC⊥DB,故②③正确.故答案是:3.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.14.(3分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为4个.【分析】根据白球个数除以小球总数进而得出得到白球的概率,进而得出答案.【解答】解:∵在一个不透明的盒子中装有8个白球,从中随机摸出一个球,它是白球的概率为,设黄球有x个,根据题意得出:∴=,解得:x=4.故答案为:4.【点评】此题主要考查了概率公式的应用,熟练利用概率公式是解题关键.15.(3分)如图,△ABC中,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,若∠DAE=28°,则∠BAC=104°.【分析】想办法求出∠B+∠C的度数即可解决问题;【解答】解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EACM∵∠B+∠C+∠BAC=180°,∠DAE=28°,∴2∠B+2∠C+∠DAE=180°,∴∠B+∠C=76°,∴∠BAC=180°﹣76°=104°.故答案为104.【点评】本题考查线段的垂直平分线的性质、三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共75分)16.(16分)(1)计算:﹣20+4﹣1×()﹣2(2)2016×2018﹣20172(3)(a+3)(a﹣1)﹣a(a﹣2)(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用平方差公式计算得出答案;(3)直接利用多项式乘以多项式运算法则计算得出答案;(4)直接利用乘法公式计算,再利用整式的除法运算法则计算得出答案.【解答】解:(1)﹣20+4﹣1×()﹣2=﹣1+×4=﹣1+1=0;(2)2016×2018﹣20172=(2017﹣1)×(2017+1)﹣20172=20172﹣1﹣20172=﹣1;(3)(a+3)(a﹣1)﹣a(a﹣2)=a2+2a﹣3﹣a2+2a=4a﹣3;(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b=(a2+4ab+4b2﹣a2+4b2)÷4b=(4ab+8b2)÷4b=a+2b.【点评】此题主要考查了实数运算以及整式的混合运算,正确应用乘法公式是解题关键.17.(7分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣时,原式=12+(﹣)2=1+=.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)如图,已知E是AB上的点,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.【分析】由AD∥BC,可得∠EAD=∠B,∠DAC=∠C,根据角平分线的定义,证得∠EAD=∠DAC,等量代换可得∠B与∠C的大小关系.【解答】解:∠B=∠C.理由如下:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC,∴∠B=∠C.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(6分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?【分析】(1)找到红色、黄色或绿色区域的份数之和占总份数的多少即为获得购物券的概率.(2)应计算出转转盘所获得的购物券与直接获得10元的购物券相比较便可解答.【解答】解:(1)整个圆周被分成了20份,转动一次转盘获得购物券的有9种情况,所以转动一次转盘获得购物券的概率=;(2)根据题意得:转转盘所获得的购物券为:50×+30×+20×=12(元),∵12元>10元,∴选择转盘对顾客更合算.【点评】本题考查了概率公式的运用,易错点在于准确无误的找到红色、黄色或绿色区域的份数之和,关键是理解获胜的概率即为可能获胜的份数之和与总份数的比.21.(11分)小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校.我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了3千米时,自行车“爆胎”修车用了5分钟.(2)修车后小明骑车的速度为每小时20千米.(3)小明离家24分钟距家6千米.(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?【分析】(1)通过图象上的点的坐标和与x轴之间的关系可知他在图中停留了5分钟;(2)利用图象得出速度即可;(3)实质是求当s=6时,t=24;(4)先算出先前速度需要分钟,做差30﹣=即可求解.【解答】解:(1)小明骑车行驶了3千米时,自行车“爆胎”修车用了5分钟.故答案为:3;5;(2)修车后小明骑车的速度为每小时千米.故答案为:20;(3)当s=6时,t=24,所以小明离家后24分钟距家6千米.故答案为:24;(4)当s=8时,先前速度需要分钟,30﹣=,即早到分钟;【点评】主要考查利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.22.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,(1)求证:△AEC≌△CDB;(2)求DE的长.【分析】(1)利用等腰直角三角形的性质和已知条件易证△AEC≌△CDB;(2)根据全等三角形的性质可得AE=CD,CE=BD,所以DE可求出.【解答】解:(1)∵∠ACB=90°,∴∠ACE+∠DCB=90°,∵AE⊥CD于E,∴∠ACE+∠CAE=90°,∴∠CAE=∠DCB,∵BD⊥CD于D,∴∠D=90°,在△AEC和△CDB中,,∴△AEC≌△CDB(AAS);(2)∵∴△AEC≌△CDB,∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=3cm.【点评】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,解答本题的关键是根据已知条件判定三角形的全等.23.(11分)探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的影部分的正方形的边长等于m﹣n.(2)请用两种不同的方法求图b中阴影部分的面积.方法1:(m﹣n)2;方法2:(m+n)2﹣4mn(3)观察图b,请你写出下列三个代数式之间的等量关系.代数式:(m+n)2,(m﹣n)2,mn,(4)根据(3)题中的等量关系,解决如下问题:若2a+2b=14,ab=5,则(a﹣b)2=29.【分析】(1)根据线段的和差定义即可解决问题;(2)①直接根据正方形的面积等于边长的平方计算;②利用分割法计算即可解决问题;(3)利用(2)中结论即可解决问题;(4)利用(3)中公式计算即可;【解答】解:(1)图b中的影部分的正方形的边长等于m﹣n.(2)方法1:(m﹣n)2;方法2:(m+n)2﹣4mn,(3)观察图b,(m+n)2,(m+n)2=(m﹣n)2+4mn,(4)∵2a+2b=14,ab=5,∴a+b=7,∴(a﹣b)2=(a+b)2﹣4ab=49﹣20=29.故答案为:m﹣n,(m﹣n)2,(m+n)2﹣4mn,29.【点评】本题考查完全平方公式的几何背景、正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.

考点卡片1.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在an中,a叫做底数,n叫做指数.an读作a的n次方.(将an看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.2.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.3.列代数式(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.(2)列代数式五点注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.【规律方法】列代数式应该注意的四个问题1.在同一个式子或具体问题中,每一个字母只能代表一个量.2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.4.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.5.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.am•an=am+n(m,n是正整数)(2)推广:am•an•ap=am+n+p(m,n,p都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.6.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(am)n=amn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=anbn(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.7.多项式乘多项式(1)多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.(2)运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.8.完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)9.平方差公式(1)平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.(a+b)(a﹣b)=a2﹣b2(2)应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.10.整式的混合运算(1)有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.(2)“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.11.整式的混合运算—化简求值先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.12.零指数幂零指数幂:a0=1(a≠0)由am÷am=1,am÷am=am﹣m=a0可推出a0=1(a≠0)注意:00≠1.13.负整数指数幂负整数指数幂:a﹣p=1ap(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.14.函数关系式用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.15.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..16.对顶角、邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.17.垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.18.平行线的判定(1)定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.(2)定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.(3)定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.(4)定理4:两条直线都和第三条直线平行,那么这两条直线平行.(5)定理5:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.19.平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等.20.全等三角形的判定(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论