差速器锁工作原理_第1页
差速器锁工作原理_第2页
差速器锁工作原理_第3页
差速器锁工作原理_第4页
差速器锁工作原理_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!感谢阅读本文档,希望本文档能对您有所帮助!感谢阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!感谢阅读本文档,希望本文档能对您有所帮助!差速器锁工作原理范文一。差速器的工作原理你将会了解到汽车为什么需要一个差速器,它工作的方式及其优缺点。我们也将会了解到防滑差速器。

工作原理。当汽车直走时,两个行星齿轮只公转,不自转。如图中右上所示。

右下图表示的是汽车(方向是朝读者这边走的)右转。

根据力学原理,转弯时内侧车轮势必会转的慢些,此时驱动轴转速不变,行星轮此时一边绕半轴

公转,一边自转。

为什么需要差速器

当汽车转向时,车轮以不同的速度旋转。在下面的动画中你可以看到,在转弯时,每个车轮驶过的距离不相等,即内侧车轮比外侧车轮驶过的距离要短。因为车速等于汽车行驶的距离除以通过这段距离所花费的时间,所以行驶距离短的车轮转动的速度就慢。同时需要注意的是:前轮较之后轮,所走过的路程是不同

的。

对于后轮驱动型汽车的从动轮,或前轮驱动型汽车的从动轮来说,不存在这样的问题。由于它们之间没有相互联结,它们彼此独立转动。但是两主动轮间相互是有联系的。因此一个引擎或一个变速箱可以同时带动两个车轮。如果你的车上没有差速器,两个车轮将不得不固定联结在一起,以同一转速驱动旋转。这会导致汽车转向困难。此时,为了使汽车能够转弯,一个轮胎将不得不打滑。对于现代轮胎和混凝土道路来说,要使轮胎打滑则需要很大的外力,这个力通过车桥从一个轮胎传到另一个轮胎,这样就给车桥零部件

产生很大的应力。

什么是差速器

差速器就是一种将发动机输出扭矩一分为二的装置,允许转向时输出两种不同的转速。

在现代轿车或货车,包括许多四轮驱动汽车上,都能找到差速器。这些四轮驱动车的每组车轮之间都需要差速器。同样,其两前轮和两后轮之间也需要一个差速器。这是因为汽车转弯时,前轮较之后轮,走过的

距离是不相同的。

部分四轮驱动车前后轮之间没有差速器。相反的,他们被固定联结在一起,以至于前后轮转向时能够以同

样的平均转速转动。这就是为什么当四轮驱动系统忙碌时,这种车辆转向困难的原因。

不同车速下转弯

我们将从最简单的一类差速器——开式差速器,讲起。首先,我们需要了解一些技术:下图就是一个开式

差速器部件。

当一辆轿车沿着一条路直线行驶时,两侧车轮以同一转速转动。输入小齿轮带动螺旋锥齿轮和壳体。壳体

内的小齿轮都不转动,两边的齿都有效的将壳体锁住。

注意到输入小齿轮的齿比螺旋锥齿轮的齿小。如果主减速比为4.10,螺旋锥齿轮的齿数就要比输入小齿轮

的齿多4.10倍。更多关于传动率的信息请参阅齿轮是如何工作的。

当一辆汽车转弯时,车轮必须以不同的转速旋转。

从上图中,你可以看到壳体内的小齿轮在车辆转向时开始转动。以此实现两侧车轮以不同的转速旋转。内

侧车轮要比壳体转得慢。但外侧车轮就要转得相对快点。

在薄冰上行驶

开式差速器一般都是将相同大小的扭矩分配到两侧车轮上。有两个因素决定分配到车轮扭矩的多少:设备及牵引力。在干燥的环境、有充足的牵引力的情况下,分配到车轮的扭矩受到发动机及齿轮的限制;在牵引力较小的情况下,诸如在冰面上行驶。在这种情况下,扭矩的大小受限于车轮不至于打滑。所以,即使一辆车可以产生更大的扭矩,同样需要足够的牵引力用以将这些扭转力矩传输到地面上。如果当车轮开始

打滑时,你用力睬油门,只会使车轮转得更快。

如果你曾经在冰面上开过车,你可能知道使加速变得容易的方法。那就是你不以一档起步而是二档起步,甚至是三档。因为变速器里的档位越高,传到车轮上的扭矩会变的更少。这样就会让车轮在不转的情况下

加速更快。

当一个汽车主动轮在附着系数较高的路面上,而另一个主动轮却在冰面上时,会发生什么情况呢。这就是

开式差速器的问题所在。

记住,开式差速器总是运用于两轮转矩相等的情况下,最大扭矩受限于最大防滑系数的限制。他并不会给在冰面上的车轮以更大的扭矩。而且牵引力好的那个车轮仅获得很少量的扭矩。此时,你的车就不能正常

运行。

越野行驶

除此之外,开式差速器可能在你越野的时候给你带来麻烦。如果你有一辆前后都有差速器的四轮驱动车或

越野车,你可能被卡住。

现在,记得——就如我们之前已经提到过的,开式差速器一般都是给两轮传递相等的扭矩。如果一侧前轮

及一侧后轮陷入地中,两轮只能在空无助的旋转,汽车根本无法移动。

这类问题只能通过防滑式差速器(lsd)来解决,有时也叫做“positraction”。防滑差速器使用多种机械技术

来实现常规差速器使车辆转弯的行为。当一侧车轮打滑时,提供更多的扭矩给不打滑的轮子。接下去的几章将详细介绍不同类型的防滑差速器,包括离合器式防滑差速器,粘性锁止式差速器,托森差

速器等。你将会了解到汽车为什么需要一个差速器,它工作的方式及其优缺点。我们也将会了解到防滑差速器。

工作原理。当汽车直走时,两个行星齿轮只公转,不自转。如图中右上所示。

右下图表示的是汽车(方向是朝读者这边走的)右转。

根据力学原理,转弯时内侧车轮势必会转的慢些,此时驱动轴转速不变,行星轮此时一边绕半轴

公转,一边自转。

为什么需要差速器

当汽车转向时,车轮以不同的速度旋转。在下面的动画中你可以看到,在转弯时,每个车轮驶过的距离不相等,即内侧车轮比外侧车轮驶过的距离要短。因为车速等于汽车行驶的距离除以通过这段距离所花费的时间,所以行驶距离短的车轮转动的速度就慢。同时需要注意的是:前轮较之后轮,所走过的路程是不同

的。

对于后轮驱动型汽车的从动轮,或前轮驱动型汽车的从动轮来说,不存在这样的问题。由于它们之间没有相互联结,它们彼此独立转动。但是两主动轮间相互是有联系的。因此一个引擎或一个变速箱可以同时带动两个车轮。如果你的车上没有差速器,两个车轮将不得不固定联结在一起,以同一转速驱动旋转。这会导致汽车转向困难。此时,为了使汽车能够转弯,一个轮胎将不得不打滑。对于现代轮胎和混凝土道路来说,要使轮胎打滑则需要很大的外力,这个力通过车桥从一个轮胎传到另一个轮胎,这样就给车桥零部件

产生很大的应力。

什么是差速器

差速器就是一种将发动机输出扭矩一分为二的装置,允许转向时输出两种不同的转速。

在现代轿车或货车,包括许多四轮驱动汽车上,都能找到差速器。这些四轮驱动车的每组车轮之间都需要差速器。同样,其两前轮和两后轮之间也需要一个差速器。这是因为汽车转弯时,前轮较之后轮,走过的

距离是不相同的。

部分四轮驱动车前后轮之间没有差速器。相反的,他们被固定联结在一起,以至于前后轮转向时能够以同

样的平均转速转动。这就是为什么当四轮驱动系统忙碌时,这种车辆转向困难的原因。

不同车速下转弯

我们将从最简单的一类差速器——开式差速器,讲起。首先,我们需要了解一些技术:下图就是一个开式

差速器部件。

当一辆轿车沿着一条路直线行驶时,两侧车轮以同一转速转动。输入小齿轮带动螺旋锥齿轮和壳体。壳体

内的小齿轮都不转动,两边的齿都有效的将壳体锁住。

注意到输入小齿轮的齿比螺旋锥齿轮的齿小。如果主减速比为4.10,螺旋锥齿轮的齿数就要比输入小齿轮

的齿多4.10倍。更多关于传动率的信息请参阅齿轮是如何工作的。

当一辆汽车转弯时,车轮必须以不同的转速旋转。

从上图中,你可以看到壳体内的小齿轮在车辆转向时开始转动。以此实现两侧车轮以不同的转速旋转。内

侧车轮要比壳体转得慢。但外侧车轮就要转得相对快点。

在薄冰上行驶

开式差速器一般都是将相同大小的扭矩分配到两侧车轮上。有两个因素决定分配到车轮扭矩的多少:设备及牵引力。在干燥的环境、有充足的牵引力的情况下,分配到车轮的扭矩受到发动机及齿轮的限制;在牵引力较小的情况下,诸如在冰面上行驶。在这种情况下,扭矩的大小受限于车轮不至于打滑。所以,即使一辆车可以产生更大的扭矩,同样需要足够的牵引力用以将这些扭转力矩传输到地面上。如果当车轮开始

打滑时,你用力睬油门,只会使车轮转得更快。

如果你曾经在冰面上开过车,你可能知道使加速变得容易的方法。那就是你不以一档起步而是二档起步,甚至是三档。因为变速器里的档位越高,传到车轮上的扭矩会变的更少。这样就会让车轮在不转的情况下

加速更快。

当一个汽车主动轮在附着系数较高的路面上,而另一个主动轮却在冰面上时,会发生什么情况呢。这就是

开式差速器的问题所在。

记住,开式差速器总是运用于两轮转矩相等的情况下,最大扭矩受限于最大防滑系数的限制。他并不会给在冰面上的车轮以更大的扭矩。而且牵引力好的那个车轮仅获得很少量的扭矩。此时,你的车就不能正常

运行。

越野行驶

除此之外,开式差速器可能在你越野的时候给你带来麻烦。如果你有一辆前后都有差速器的四轮驱动车或

越野车,你可能被卡住。

现在,记得——就如我们之前已经提到过的,开式差速器一般都是给两轮传递相等的扭矩。如果一侧前轮

及一侧后轮陷入地中,两轮只能在空无助的旋转,汽车根本无法移动。

这类问题只能通过防滑式差速器(lsd)来解决,有时也叫做“positraction”。防滑差速器使用多种机械技术

来实现常规差速器使车辆转弯的行为。当一侧车轮打滑时,提供更多的扭矩给不打滑的轮子。接下去的几章将详细介绍不同类型的防滑差速器,包括离合器式防滑差速器,粘性锁止式差速器,托森差

速器等。

范文二:差速器的工作原理差速器(变速箱)详解.

差速器具有三种功能:

。使发动机动力指向车轮相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因)本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器。车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组件上形成很大的压力。什么是差速器。差速器是将发动机按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。

现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

分时四轮驱动系统在前轮和后轮之间没有差速器,相反,他们被锁止在一起,以便前轮和后轮以相同的平均速度转弯。这就是当四轮驱动系统啮合时这些车辆在混凝土路面上很难转弯的原因。以不同的速度旋转我们将介绍最简单的差速器——开式差速器。首先,我们需要了解一些术语:下面的图像标示的是开式差速器的组件。

当车辆笔直向前行驶时,两个驱动轮以相同的速度旋转。输入小齿轮转动齿圈和保护架,同时保护架内的小齿轮均不旋转,这样两侧齿轮均被有效锁定到保护架。geebee"svector

animations提供动画注意,输入小齿轮是小于齿圈的齿轮,它是汽车上的末级减速齿轮。您可能听说过一些术语,如后轴比或主减速器传动比。这些是差速器中的齿轮比。如果主减速器传动比是4.10,则齿圈的齿数是输入小齿轮齿数的4.10倍。汽车转弯时,车轮必须以不同的速度旋转。在上图中,可以看到汽车开始转弯时保护架上的小齿轮开始旋转,车轮以不同的速度移动。内侧齿轮比保护架旋转得慢,而外侧车轮比保护架旋转得快。

开式差速器——直线行驶时开式差速器——转弯行驶时(1.1mb)汽车中离合器的位置

本文将介绍使用离合器的原因,使您了解离合器在汽车中的工作原理,并且讨论一下一些可以放置离合器的有趣的甚至可能令人意想不到的位置。离合器对于带有两个旋转轴的设备很有用。在这些设备中,一个轴通常由或皮带轮来驱动,而另一个轴用来驱动其他设备。例如在钻孔机中,一个轴由电机驱动,另一个轴驱动钻夹头。离合器连接了两个轴,这样它们可以锁定在一起,以同样的速度旋转,或者分离,以不同的速度旋转。基本离合器您需要在汽车中安装离合器,因为始终在旋转,而车轮则不会。要使车辆停止而不损坏发动机,车轮需要以某种方式与发动机断开。离合器通过控制发动机和变速器之间的滑程,使我们可以轻松地将旋转着的发动机连接到没有旋转的变速器上。要了解离合器的工作原理,知道一点有关的知识是很有帮助的。在下图中,您可以看到飞轮是连接在发动机上的,而离合器片是连接在变速器上的。汽车离合器的展开视图当脚离开踏板时,弹簧会向离合器盘方向推动压盘,从而挤压飞轮。这样可将发动机锁定到变速器输入轴上,使它们以相同的速度旋转。

美国卡罗莱纳州野马供图压盘离合器作用力的大小取决于离合器片和飞轮之间的摩擦力以及弹簧对压盘的压力的大小。离合器中摩擦力的工作方式与摩擦部分描述的缸体的工作方式一样,只不过它是将弹簧压在离合器片上,而不是依靠重力将物体压向地面。离合器如何接合和分离踩下离合器踏板时,电缆或将推动分离叉,从而向膜片弹簧的中间部位按压分离轴承。由于膜片弹簧的中间部位被推入,弹簧外侧附近的一组销将导致弹簧将压盘从离合器盘上拉开(参见下图)。这可使离合器从旋转着的发动机上分离。汽车需要变速器,这是由的物理特性决定的。首先,任何发动机都有速度极限,转速超过这个最大值,发动机就会爆炸。其次,如果读过,您就会知道,在马力和扭矩都达到最大值时,发动机的转速变化范围很小。例如,发动机可能在5,500转/分时产生最大马力。在汽车加速或者减速时,变速器的存在使发动机与驱动轮之间的能够发生变化。通过改变齿比,就能使发动机转速保持在速度极限以下,并且使发动机接近最佳性能转速区。

戴姆勒克莱斯勒供图奔驰actros重型卡车的手动变速器在理想情况下,变速器齿比变化范围非常大,因而发动机总是以单一的最佳性能转速运行。这就是(cvt)的概念。cvt的齿比范围几乎没有任何限制。过去,cvt在成本、尺寸和可靠性方面都不能与四速和五速变速器抗衡,所以在量产汽车中看不到它们。目前,设计方面的改善使cvt得到了普及。。就是使用cvt的。

变速器通过与发动机连接。因此,变速器输入轴的转速与发动机相同。

戴姆勒克莱斯勒供图奔驰c级运动型跑车六速手动变速器五速变速器为输入轴提供五种不同的齿比,以便在输出轴产生不同的转速值。以下是一些典型的齿比:挡位速比发动机转速为3000转/分时变速器输出轴的转速一挡2.315:11,295二挡1.568:11,913三挡1.195:12,510四挡1.000:13,000五挡0.915:13,278有关无级变速器工作原理的更多信息,请参考。接下来让我们看看简单的变速器。

为了帮助了解标准变速器的基本原理,下图显示了处于空挡状态的简单两速变速器。

让我们来看看图中的每一个部件,以及它们是如何装配的:

。绿色轴将发动机与连接起来。绿色轴和绿色齿轮连在一起,形成一个整体。(离合器是用于连接发动机和变速器或断开其间连接的装置。踩下离合器踏板时,发

动机与变速器断开,此时虽然汽车并不移动,但发动机仍在运转。而松开离合器

踏板时,发动机和绿色轴就直接连在一起。绿色轴和齿轮的转速与发动机相同。)。红色轴及红色齿轮称为副轴。它们也连为一个整体,因此副轴上的所有和副轴本身作为整体旋转。绿色轴与红色轴直接通过各自的啮合齿轮连接起来,所以当绿

色轴转动时,红色轴也会转动。因此,一旦离合器接合,副轴就直接从获得动力。。黄色轴是花键轴,通过连接到汽车驱动轮的直接与驱动轴相连。如果车轮转动,黄色轴也将随之转动。

。蓝色齿轮连在轴承上,因此会随黄色轴转动。如果发动机已关闭,但汽车还在滑行,则在蓝色齿轮和副轴停止运动时,黄色轴仍可能在蓝色齿轮内部转动。

。轴环将两个蓝色齿轮中的一个连接到黄色驱动轴上。它通过齿槽直接与黄色轴相连,并与黄色轴一起转动。但轴环也可以沿着黄色轴左右滑动,从而选择性地接

合两个蓝色齿轮中的一个。轴环中的齿称为犬齿,可与蓝色齿轮侧面的孔相接合。一挡齿轮下图显示了当轴环换到一挡时如何结合右边的蓝色齿轮:

图中,发动机的绿色轴转动副轴,副轴则转动右边的蓝色齿轮。齿轮通过轴环驱动黄色驱动轴。同时,左边的齿轮也在转动,但只是在其轴上空转,对黄色轴并不产生影响。当轴环位于两个齿轮之间时(如第一图所示),变速器为空挡状态。黄色轴上以不同速率运转的两个蓝色齿轮都通过其与副轴的速比来控制。通过以上讨论,您可以回答以下几个问题:

。在换挡时,如果操作错误,听到可怕的碾磨声,这个声音不是误啮合齿轮发出的。从图中可以看出,所有轮齿总是处于完全啮合状态。这种碾磨声是犬齿接合蓝色

齿轮侧孔失败发出的。

。这里显示的变速器没有“同步”(在下文中讨论),所以使用此变速器时,您必须双踩离合。双踩离合在老式汽车中很常见,而在一些现代中也仍然很常用。在

双踩离合时,先合下离合踏板,使发动机与变速器分离。这样可消除犬齿的压力,从而将轴环切换至空挡状态。然后松开离合器踏板,使发动机恢复“正确速度”。该速度就是发动机下一齿轮的运转速度。这样做的目的,在于使下一个蓝色齿轮

与轴环以相同的转速运行,这样犬齿就能接合。然后再次踩下踏板并将轴环锁定

到新齿轮中。每换一个齿轮,都必须踩下和松开两次离合器,因此称为“双离合”。。另外,您还可以了解换挡按钮的微小线性位移怎样实现齿轮更换。换挡按钮移动连接到拨叉的杆。拨叉使轴环在黄色轴上滑动,从而与两个齿轮中的一个接合。现在我们来看看真正的变速器。下面的动画显示了一个带倒挡的四速变速器的内部工作状况。geebee"svectoranimations提供动画如今,五速手动变速器在汽车上已经相当普遍了。

其内部结构如下图所示:

有三个拨叉,由换挡杆接合的三个杆控制。俯看换挡叉轴,它们在空挡、倒挡、一挡和二挡中的情形如下图所示:

注意,换挡杆中部有一个旋转点。在将旋钮前推接合一挡齿轮时,实际上是在推动杆和拨叉,以便将一挡齿轮拉回来。可以看到,左右移动变速杆也是在接合不同的拨叉(从而接合不同的轴环)。将旋钮前后移动也就移动了轴环,使它们接合一个齿轮。

倒挡齿轮由一个小惰轮(紫色)来操控。该图中的蓝色倒挡齿轮总是与其他所有蓝色齿轮的转动方向相反。因此,当汽车前进时,不可能将变速器切换到倒挡(因为犬齿不能啮合)。但它们会产生大量的噪音。同步器新式客车的手动变速器采用同步器,这样就不需要使用双踩离合。同步器的作用是,在与犬齿接触前,使轴环与齿轮发生有摩擦的接触。这样,在犬齿接合前,就可以使轴环和齿轮速度达到同步,如图所示:

蓝色齿轮上的锥体接合轴环中的锥形区域,锥体与轴环间的摩擦使轴环和齿轮同步。部随之滑动,使犬齿接合齿轮。

轴环的外

范文三:差速器工作原理差速器

要解释差速器原理,我们首先引用百度百科中的解释:

“。。汽车在拐弯时车轮的轨线是圆弧,如果汽车向左转弯,圆弧的中心点在左侧,在相同的时间里,右侧轮子走的弧线比左侧轮子长,为了平衡这个差异,就要左边轮子慢一点,右边轮子快一点,用不同的转速来弥补距离的差异。”

“。。普通差速器由行星齿轮、行星轮架(差速器壳)、半轴齿轮等零件组成。发动机的动力经传动轴进入差速器,直接驱动行星轮架,再由行星轮带动左、右两条半轴,分别驱动左、右车轮。差速器的设计要求满足:(左半轴转速)+(右半轴转速)=2(行星轮架转速)。当汽车直行时,左、右车轮与行星轮架三者的转速相等处于平衡状态,而在汽车转弯时三者平衡状态被破坏,导致内侧轮转速减小,外侧轮转速增加。。。”

“这种调整是自动的,这里涉及到‘最小能耗原理’,也就是地球上所有物体都倾向于耗能最小的状态。例如把一粒豆子放进一个碗内,豆子会自动停留在碗底而绝不会停留在碗壁,因为碗底是能量最低的位置(位能),它自动选择静止(动能最小)而不会不断运动。同样的道理,车轮在转弯时也会自动趋向能耗最低的状态,自动地按照转弯半径调整左右轮的转速。当转弯时,由于外侧轮有滑拖的现象,内侧轮有滑转的现象,两个驱动轮此时就会产生两个方向相反的附加力,由于‘最小能耗原理’,必然导致两边车轮的转速不同,从而破坏了三者的平衡关系,并通过半轴反映到半轴齿轮上,迫使行星齿轮产生自转,使外侧半轴转速加快,内侧半轴转速减慢,从而实现两边车轮转速的差异。”

如果你对上面的长篇大论不感兴趣,直接看下面这个视频吧:

为什么要装差速器。

首先要说的是差速器这个装置装在哪里,它的位置应该处于传动轴与左右半轴的交汇点,

从变速箱输出的动力在这里被分配到左右两个半轴。至于为什么要装差速器这个问题就不需多做解释了,百度百科里写得非常清楚。我们都知道汽车在直线行驶时左右两个驱动轮的转速是相同的,但在转弯过时两边车轮行驶的距离不是等长的,因此车轮的转速肯定也会不同。差速器的作用就在于允许左右两边的驱动轮以不同的转速运行。

差速器的构造:

其实说白了,整个差速器系统的核心是四个齿轮。两个行星齿轮和两个与传动轴相连的半轴齿轮。这四个齿轮都在差速器壳内,这个壳体连接着传动轴(图中①),本身也要转动,在行驶时它的转动方向与车轮转动方向相同。

我们可以用一个球体来解释差速器问题。我们假设这个球体和地球一样有两个极点,并且以两极的连线为轴进行自传,这个球体可以理解为差速器壳体,这个壳体的两极连接的就是汽车的左右半轴。这里安装着两个半轴齿轮,两齿轮中心的连线就是差速器壳体转动的轴线(图中②、④)。

除了两个半轴齿轮外还有两个行星齿轮(图中③)。

理解两个行星齿轮的状态是理解差速原理的关键。还拿刚才所说的球体来举例,两个齿轮是对向安装并且与半轴齿轮垂直,相当于6点钟和12点钟位置。这两个齿轮经常要朝相反方向转动,从而实现差速作用。壳体在自传过程中会带着两个齿轮做公转。

这四个齿轮虽然安装在壳体内部但都是可以独立于差速器壳体转动的,只不过它们相互咬合在一起,每个齿轮的两边都咬合着另外两个齿轮(每个半轴齿轮都咬合着两个行星齿轮,每个行星齿轮都咬合着两个半轴齿轮),只要其中一个齿轮转动都会牵扯到其他三个齿轮一起转动,而且其中一个齿轮朝某个方向转动,与它相对的另一边齿轮必定朝反方向转动。这个现象可以通过实验来证实:如果把一辆车的两个驱动轮都悬空,转动一边的车轮,另一侧车轮会朝相反方向转动。

差速器的运作原理:

『车辆直行时差速器状态』

直线行驶时的特点是左右两边驱动轮的阻力大致相同。从发动机输出的动力首先传递到差速器壳体上使差速器壳体开始转动。接下来要把动力从壳体传递到左右半轴上,我们可以

理解为两边的半轴齿轮互相在“较劲”,由于两边车轮阻力相同,因此二者谁也掰不过对方,

因此差速器壳体内的行星齿轮跟着壳体公转同时不会产生自转,两个行星齿轮咬合着两个半轴齿轮以相同的速度转动,这样汽车就可以直线行驶了。

『一侧车轮遇到阻力』

假设车辆现在向左转,左侧驱动轮行驶的距离短,相对来说会产生更大的阻力。差速器壳体通过齿轮和输出轴相连,在传动轴转速不变情况下差速器壳体的转速也不变,因此左侧半轴齿轮会比差速器壳体转得慢,这就相当于行星齿轮带动左侧半轴会更费力,这时行星齿轮就会产生自传,把更多的扭矩传递到右侧半轴齿轮上,由于行星齿轮的公转外加自身的自传,导致右侧半轴齿轮会在差速器壳体转速的基础上增速,这样以来右车轮就比左车轮转得快,从而使车辆实现顺滑的转弯。

差速器对越野性能的影响:

由于差速器允许车轮以不同转速转动,所以在泥泞等路面,当一个车轮打滑时,动力全部消耗在飞快转动的打滑车轮上了,其他车轮会失去动力。通俗的话说,差速器是让车辆转

弯时候内外轮有轮速差用的,否则车辆转弯就会困难,但是差速器在越野道路上就是帮倒忙的。

因此,在四驱车上,还需配有限制和防止打滑的装置,如差速锁、限滑差速器、牵引力控制系统等。

范文四:差速器工作原理河北工业大学

创新设计论文

姓名:李萌学号127432

学院:土木工程学院系(专业):交通运输班级:c121

汽车差速器的工作原理

一、什么是差速器

差速器是一种能使旋转运动自一根轴传至两根轴,并使后者相互间能以不同转速旋转的差动机构。一般由齿轮组成。汽车、拖拉机上的差速器位于后桥内,由差速壳、行星齿轮及半轴齿轮组成。

差速器是一种将发动机输出扭矩一分为二的装置,允许转向时输出两种不同的转速。

在现代轿车或货车,包括许多四轮驱动汽车上,都能找到差速器。这些四轮驱动车的每组车轮之间都需要差速器。同样,其两前轮和两后轮之间也需要一个差速器。这是因为汽车转弯时,前轮较之后轮,走过的距离是不相同的。部分四轮驱动车前后轮之间没有差速器。相反的,他们被固定联结在一起,以至于前后轮转向时能够以同样的平均转速转动。这就是为什么当四轮驱动系统忙碌时,这种车辆转向困难的原因。

差速器属于第三级中型发明。

二、差速器的基本作用

差速器的作用就是即是满足汽车转弯时两侧车轮转速不同的要求。汽车转弯时,内侧车轮和外侧车轮的转弯半径不同,外侧车轮的转弯半径要大于内侧车轮的转弯半径,这就要求在转弯时外侧车轮的转速要高于内侧车轮的转速。这个作用是差速器最基本的作用,至于后为发展的什么中央差速器、防滑差速器、lsd差速器、托森差速器等,他们是为了提高汽车的行驶性能、操控性能而设计的。

三、差速器的基本结构

典型的差速器结构图

1-轴承;2和8-差速器壳;3和5-调整垫片;6-行星齿轮;7-从动锥

齿轮;4-半轴齿轮;9-行星齿轮轴;

差速器最基本的结构由差速器从动齿轮(图中的7)、差速器壳体、行星齿轮轴、行星齿轮、半轴齿轮组成;

1-输入轴(将驱动差速器从动齿轮);2-差速器壳体;3-行星齿轮;4

-半轴齿轮(驱动两侧传动轴输出);

发明原理。组合,周期性的作用,齿轮每周期的旋转。

通用工程参数。装置的复杂性。

四、差速器的传动原理

差速器的动力输入:从动齿轮(锥齿轮等),带动差速器壳体旋转;差速器的输出:两个半轴齿轮,连接两侧的传动轴(也称为半轴)将动力给两侧车轮;

行星齿轮的自转:指的是行星齿轮绕行星齿轮轴的旋转;

行星齿轮的公转:指的是行星齿轮绕半轴齿轮轴线的旋转;

1直线行驶时差速器的工作状态:

直线行驶差速器状态图

直线行驶时,差速器壳体(作为差速器的输入)带动行星齿轮轴,从而带动行星齿轮绕半轴齿轮轴线公转,行星齿轮绕半轴齿轮轴线的公转将半轴齿轮夹持,带动半轴齿轮输出动力。所以在直线行驱时:

左侧车轮转速(即左侧半轴齿轮转速)=右侧车轮转速(右半轴齿轮转速)=差速器壳体的转速。

2将车轮支起后,转一侧车轮,另一侧车轮将反向同速旋转的原因。多数人经历过这种情况:将汽车的驱动轮支起,变速器挂上档,如果转一侧车轮,另一侧车轮将反向旋转。挂档的目的是锁止差速器壳体,不让差速器壳体旋转。因为差速器壳体不能旋转,也就没有了行星齿轮的公转了,但是当转动一侧车轮时,这一侧的半轴齿轮驱动行星齿轮绕自身轴线自转,从而带动另一侧半轴齿轮反向旋转,自然加一侧车轮也就反向旋转了。

3转弯时差速器的工作状态:

转弯时,行星齿轮在原来公转的基础上发生了自转,前面提到,行星齿轮只公转不自转时,两个半轴齿轮的转速和转向与差速器壳相等;而只自转不公转时,两个半轴齿轮的转向相反;现在是在行星齿轮公转的基础上发生了自转,假设公转转速是顺转100转,自转时驱动一侧半轴齿轮顺转10转,另一侧逆转10转。转向时,一侧半轴齿轮转速是110转(100+10),而另侧半轴齿轮的转速是90转(100-10)。

行星齿轮发生自动发生自转的,转向时,内侧的转弯半径下,自然行驶阻力增大了,内侧车轮转速低于差速器壳转速,行星齿轮发生自转,另一侧车轮转速自然升高,高于差速器壳体的转速。

通用工程参数。速度,行驶时齿轮的速度,转向时左右齿轮不同的速度。能量的损失,差速器利用了最小耗能原理,车轮在转弯时也会自动趋向能耗最低的状态,自动地按照转弯半径调整左右轮的转速。

五、分类

现代汽车上的差速器通常按其工作特性分为齿轮式差速器和防滑差速器两大类。

范文五:差速器的工作原理就形象说一说把,比方说汽车拐弯的时候,内侧轮和外侧轮走过的距离是不一样的,因为转弯半径不一样,外侧的半径大一个车身宽度。那么同样的时间走过的距离不一样,车轮的转速也是不一样的,如果转速一样,要么无法走曲线,要么有一个轮胎要打滑。为了解决这种转速不同的问题,就设计了差速器。这个结构比较复杂,基本工作原理是:中央传动轴把通过变速箱的动力(表现为转速)传递到差速器,差速器通过关联机构将转速慢的轮速度减一点,快的就相应加一点。加减的幅度是相等的。这样,车辆转弯的时候,就可以实现内外轮的转速不同了。

没有差速器,呵呵,汽车只能走直线喽。哈哈

差速器的工作原理

凯伦奈斯著

如果你已经阅读了汽车发动机工作原理,你就能懂得汽车动力是如何产生的;如果你已经阅读了手动变速器的工作原理,你就会懂得下一步动力会传到哪里。对大多数汽车来说,差速器在其传动系中,位于驱动轮之前的最后一级。本文将阐述差速器的工作原理。

差速器有三大功用:

把发动机发出的动力传输到车轮上;

充当汽车主减速齿轮,在动力传到车轮之前将传动系的转速减下来

将动力传到车轮上,同时,允许两轮以不同的轮速转动

在本文中,你将会了解到汽车为什么需要一个差速器,它工作的方式及其优缺点。我们也将会了解到防滑差速器。

为什么需要差速器

当汽车转向时,车轮以不同的速度旋转。在下面的动画中你可以看到,在转弯时,每个车轮驶过的距离不相等,即内侧车轮比外侧车轮驶过的距离要短。因为车速等于汽车行驶的距离除以通过这段距离所花费的时间,所以行驶距离短的车轮转动的速度就慢。同时需要注意的是:前轮较之后轮,所走过的路程是不同的。

对于后轮驱动型汽车的从动轮,或前轮驱动型汽车的从动轮来说,不存在这样的问题。由于它们之间没有相互联结,它们彼此独立转动。但是两主动轮间相互是有联系的。因此一个引擎或一个变速箱可以同时带动两个车轮。如果你的车上没有差速器,两个车轮将不得不固定联结在一起,以同一转速驱动旋转。这会导致汽车转向困难。此时,为了使汽车能够转弯,一个轮胎将不得不打滑。对于现代轮胎和混凝土道路来说,要使轮胎打滑则需要很大的外力,这个力通过车桥从一个轮胎传到另一个轮胎,这样就给车桥零部件产生很大的应力。

什么是差速器

差速器就是一种将发动机输出扭矩一分为二的装置,允许转向时输出两种不同的转速。

在现代轿车或货车,包括许多四轮驱动汽车上,都能找到差速器。这些四轮驱动车的每组车轮之间都需要差速器。同样,其两前轮和两后轮之间也需要一个差速器。这是因为汽车转弯时,前轮较之后轮,走过的距离是不相同的。部分四轮驱动车前后轮之间没有差速器。相反的,他们被固定联结在一起,以至于前后轮转向时能够以同样的平均转速转动。这就是为什么当四轮驱动系统忙碌时,这种车辆转向困难的原因。

不同车速下转弯

我们将从最简单的一类差速器——开式差速器,讲起。首先,我们需要了解一些技术:下图就是一个开式差速器部件。

当一辆轿车沿着一条路直线行驶时,两侧车轮以同一转速转动。输入小齿轮带动螺旋锥齿轮和壳体。壳体内的小齿轮都不转动,两边的齿都有效的将壳体锁住。

注意到输入小齿轮的齿比螺旋锥齿轮的齿小。如果主减速比为4.10,螺旋锥齿轮的齿数就要比输入小齿轮的齿多

4.10倍。更多关于传动率的信息请参阅齿轮是如何工作的。

当一辆汽车转弯时,车轮必须以不同的转速旋转。

从上图中,你可以看到壳体内的小齿轮在车辆转向时开始转动。以此实现两侧车轮以不同的转速旋转。内侧车轮要比壳体转得慢。但外侧车轮就要转得相对快点。

在薄冰上行驶

开式差速器一般都是将相同大小的扭矩分配到两侧车轮上。有两个因素决定分配到车轮扭矩的多少:设备及牵引力。在干燥的环境、有充足的牵引力的情况下,分配到车轮的扭矩受到发动机及齿轮的限制;在牵引力较小的情况下,诸如在冰面上行驶。在这种情况下,扭矩的大小受限于车轮不至于打滑。所以,即使一辆车可以产生更大的扭矩,同样需要足够的牵引力用以将这些扭转力矩传输到地面上。如果当车轮开始打滑时,你用力睬油门,只会使车轮转得更快。

如果你曾经在冰面上开过车,你可能知道使加速变得容易的方法。那就是你不以一档起步而是二档起步,甚至是三档。因为变速器里的档位越高,传到车轮上的扭矩会变的更少。这样就会让车轮在不转的情况下加速更快。当一个汽车主动轮在附着系数较高的路面上,而另一个主动轮却在冰面上时,会发生什么情况呢。这就是开式差速器的问题所在。

记住,开式差速器总是运用于两轮转矩相等的情况下,最大扭矩受限于最大防滑系数的限制。他并不会给在冰面上的车轮以更大的扭矩。而且牵引力好的那个车轮仅获得很少量的扭矩。此时,你的车就不能正常运行。

越野行驶

除此之外,开式差速器可能在你越野的时候给你带来麻烦。如果你有一辆前后都有差速器的四轮驱动车或越野车,你可能被卡住。

现在,记得——就如我们之前已经提到过的,开式差速器一般都是给两轮传递相等的扭矩。如果一侧前轮及一侧后轮陷入地中,两轮只能在空无助的旋转,汽车根本无法移动。

这类问题只能通过防滑式差速器(lsd)来解决,有时也叫做“positraction”。防滑差速器使用多种机械技术来实现常规差速器使车辆转弯的行为。当一侧车轮打滑时,提供更多的扭矩给不打滑的轮子。

接下去的几章将详细介绍不同类型的防滑差速器,包括离合器式防滑差速器,粘性锁止式差速器,托森差速器等。

范文六。差速器工作原理各类差速器的比较。

一、开式差速器

切诺基的开式差速器的结构,是典型的行星齿轮组结构,只不过太阳轮和外齿圈的齿数是一样的。在这套行星齿轮组里,主动轮是行星架,被动轮是两个太阳轮。通过行星齿轮组的传动特性我们知道,如果行星架作为主动轴,两个太阳轮的转速和转动方向是不确定的,甚至两个太阳轮的转动方向是相反的。

车辆直行状态下,这种差速器的特性就是,给两个半轴传递的扭矩相同。在一个驱动轮悬空情况下,如果传动轴是匀速转动,有附着力的驱动轮是没有驱动力的,如果传动轴是加速转动,有附着力的驱动轮的驱动力等于悬空车轮的角加速度和转动惯量的乘积。

车辆转弯轮胎不打滑的状态下,差速器连接的两个半轴的扭矩方向是相反的,给车辆提供向前驱动力的,只有内侧的车轮,行星架和内侧的太阳轮之间由等速传动变成了减速传动,驾驶感觉就是弯道加速比直道加速更有力。

开式差速器的优点就是在铺装路面上转行行驶的效果最好。缺点就是在一个驱动轮丧失附着力的情况下,另外一个也没有驱动力。

开式差速器的适用范围是所有铺装路面行驶的车辆,前桥驱动和后桥驱动都可以安装。

二、限滑差速器

限滑差速器用于部分弥补开式差速器在越野路面的传动缺陷,它是在开式差速器的机构上加以改进,在差速器壳的边齿轮之间增加摩擦片,对应于行星齿轮组来讲,就是在行星架和太阳轮之间增加了摩擦片,增加太阳轮与行星架自由转动的阻力力矩。

限滑差速器提供的附加扭矩,与摩擦片传递的动力和两驱动轮的转速差有关。

在开式差速器结构上改进产生的lsd,不能做到100%的限滑,因为限滑系数越高,车辆的转向特性越差。

lsd具备开式差速器的传动特性和机械结构。优点就是提供一定的限滑力矩,缺点是转向特性变差,摩擦片寿命有限。

lsd的适用范围是铺装路面和轻度越野路面。通常用于后驱车。前驱车一般不装,因为lsd会干涉转向,限滑系数越大,转向越困难。

三、锁止式差速器(机械锁止、电动锁止、气动锁止)

为了保证车辆在复杂的越野路况下的行驶性能,通过一定的机械结构把差速器锁死,实现两个半轴的同步转动。通过行星齿轮组分析,就是把行星齿轮组的变速机构锁死,保证行星架和太阳轮之间,以及两个太阳轮之间的传动比都是1:1。可以把太阳轮和行星架锁止,可以把行星架和行星齿轮锁死,还可以把两个太阳轮锁死。

锁止式差速器,在没有锁止的时候,其传动特性与开式差速器完全相同,在锁止的情况下,传动比被固定为1:1。

种差速器的优点不言而喻,在越野路面提供了最大的驱动力,缺点是在差速器锁止的情况下,车辆转向极其困难;存在单车轮承受发动机100%的扭矩的可能,半轴会因为扭矩过大而变形或折断;车辆在转向的过程中,两半轴承受相反的扭矩,如果两侧轮胎的附着力都很大,会扭断半轴。另外这种差速器,在车辆行驶过程中执行锁止动作会产生比较大的噪音。

锁止式差速器具备开式差速器的所有结构和特性,在未锁止的情况下,应用范围与开式差速器相同;在锁止的情况下,只适合于低速行驶在非铺装路面,不能在铺装路面上行驶,否则会导致车辆损坏和转向失控。

这类差速器以arb的气动锁止产品和eaton的电动锁止产品为代表。

四、电子差速器锁

电子差速器锁与上述的几种相比,没有改变开式差速器的结构和特性,而是利用abs或ebd系统来执行单侧制动打滑的车轮的动作,限制两驱动轮的转速差,保证两个驱动轮都有动力。

优点:安全性好,不会损坏车辆。缺点:需要abs和ebd系统,造价昂贵;在严酷的越野环境下,电子产品的可靠性不如机械产品;单侧车轮的驱动力,不如锁止式差速器的大。

这类差速器锁,由于成本原因,一般只应用于高档轿车和高档的suv。

五、自动机械锁止差速器

这类差速器的基本结构和机械锁止式差速器相同,不同的是,机械锁止差速器的锁止和解锁,完全由驾驶员人工控制;自动机械锁止式差速器则是根据路况自行锁止和解锁。它的锁止检测机构很精巧,检测量有两个,一个是差速器边齿轮和差速器壳子之间的转速差,另外一个就是差速器壳的转速。

锁止条件。差速器壳体转速不超过设定值(也就是车速低于设定值),变齿轮与差速器壳的转速差超过设定值(左右车轮的转速差太大),如果两个条件都符合,就会触发差速器的锁止,正常行驶中的转向不会引起它的锁止。整个锁止过程,车轮空转的角度差不超过360度。

解锁条件。差速器壳转速超过设定值(车速超过设定值),左右半轴的扭矩方向相反(车辆开式转向),满足两者中的任何一个,就会立即解锁。

优点。公路行驶特性与开式差速器完全相同。越野路面,与锁止式差速器特性完全相同,不会因为转向而扭断半轴,其锁止和解锁过程完全是自动的,不需要人为干预。可靠性非常高。

缺点。锁止噪音比较大,结构比机械锁止差速器复杂,每一种差速器只能适用于一种车型,不具有通用性。

适用性。可以直接替换开式差速器,前驱后驱都可以用,没有适用性方面的限制。各类差速器的比较。

一、开式差速器

切诺基的开式差速器的结构,是典型的行星齿轮组结构,只不过太阳轮和外齿圈的齿数是一样的。在这套行星齿轮组里,主动轮是行星架,被动轮是两个太阳轮。通过行星齿轮组的传动特性我们知道,如果行星架作为主动轴,两个太阳轮的转速和转动方向是不确定的,甚至两个太阳轮的转动方向是相反的。

车辆直行状态下,这种差速器的特性就是,给两个半轴传递的扭矩相同。在一个驱动轮悬空情况下,如果传动轴是匀速转动,有附着力的驱动轮是没有驱动力的,如果传动轴是加速转动,有附着力的驱动轮的驱动力等于悬空车轮的角加速度和转动惯量的乘积。

车辆转弯轮胎不打滑的状态下,差速器连接的两个半轴的扭矩方向是相反的,给车辆提供向前驱动力的,只有内侧的车轮,行星架和内侧的太阳轮之间由等速传动变成了减速传动,驾驶感觉就是弯道加速比直道加速更有力。

开式差速器的优点就是在铺装路面上转行行驶的效果最好。缺点就是在一个驱动轮丧失附着力的情况下,另外一个也没有驱动力。

开式差速器的适用范围是所有铺装路面行驶的车辆,前桥驱动和后桥驱动都可以安装。

二、限滑差速器

限滑差速器用于部分弥补开式差速器在越野路面的传动缺陷,它是在开式差速器的机构上加以改进,在差速器壳的边齿轮之间增加摩擦片,对应于行星齿轮组来讲,就是在行星架和太阳轮之间增加了摩擦片,增加太阳轮与行星架自由转动的阻力力矩。

限滑差速器提供的附加扭矩,与摩擦片传递的动力和两驱动轮的转速差有关。

在开式差速器结构上改进产生的lsd,不能做到100%的限滑,因为限滑系数越高,车辆的转向特性越差。

lsd具备开式差速器的传动特性和机械结构。优点就是提供一定的限滑力矩,缺点是转向特性变差,摩擦片寿命有限。

lsd的适用范围是铺装路面和轻度越野路面。通常用于后驱车。前驱车一般不装,因为lsd会干涉转向,限滑系数越大,转向越困难。

三、锁止式差速器(机械锁止、电动锁止、气动锁止)

为了保证车辆在复杂的越野路况下的行驶性能,通过一定的机械结构把差速器锁死,实现两个半轴的同步转动。通过行星齿轮组分析,就是把行星齿轮组的变速机构锁死,保证行星架和太阳轮之间,以及两个太阳轮之间的传动比都是1:1。可以把太阳轮和行星架锁止,可以把行星架和行星齿轮锁死,还可以把两个太阳轮锁死。

锁止式差速器,在没有锁止的时候,其传动特性与开式差速器完全相同,在锁止的情况下,传动比被固定为1:1。

种差速器的优点不言而喻,在越野路面提供了最大的驱动力,缺点是在差速器锁止的情况下,车辆转向极其困难;存在单车轮承受发动机100%的扭矩的可能,半轴会因为扭矩过大而变形或折断;车辆在转向的过程中,两半轴承受相反的扭矩,如果两侧轮胎的附着力都很大,会扭断半轴。另外这种差速器,在车辆行驶过程中执行锁止动作会产生比较大的噪音。

锁止式差速器具备开式差速器的所有结构和特性,在未锁止的情况下,应用范围与开式差速器相同;在锁止的情况下,只适合于低速行驶在非铺装路面,不能在铺装路面上行驶,否则会导致车辆损坏和转向失控。

这类差速器以arb的气动锁止产品和eaton的电动锁止产品为代表。

四、电子差速器锁

电子差速器锁与上述的几种相比,没有改变开式差速器的结构和特性,而是利用abs或ebd系统来执行单侧制动打滑的车轮的动作,限制两驱动轮的转速差,保证两个驱动轮都有动力。

优点:安全性好,不会损坏车辆。缺点:需要abs和ebd系统,造价昂贵;在严酷的越野环境下,电子产品的可靠性不如机械产品;单侧车轮的驱动力,不如锁止式差速器的大。

这类差速器锁,由于成本原因,一般只应用于高档轿车和高档的suv。

五、自动机械锁止差速器

这类差速器的基本结构和机械锁止式差速器相同,不同的是,机械锁止差速器的锁止和解锁,完全由驾驶员人工控制;自动机械锁止式差速器则是根据路况自行锁止和解锁。它的锁止检测机构很精巧,检测量有两个,一个是差速器边齿轮和差速器壳子之间的转速差,另外一个就是差速器壳的转速。

锁止条件。差速器壳体转速不超过设定值(也就是车速低于设定值),变齿轮与差速器壳的转速差超过设定值(左右车轮的转速差太大),如果两个条件都符合,就会触发差速器的锁止,正常行驶中的转向不会引起它的锁止。整个锁止过程,车轮空转的角度差不超过360度。

解锁条件。差速器壳转速超过设定值(车速超过设定值),左右半轴的扭矩方向相反(车辆开式转向),满足两者中的任何一个,就会立即解锁。

优点。公路行驶特性与开式差速器完全相同。越野路面,与锁止式差速器特性完全相同,不会因为转向而扭断半轴,其锁止和解锁过程完全是自动的,不需要人为干预。可靠性非常高。

缺点。锁止噪音比较大,结构比机械锁止差速器复杂,每一种差速器只能适用于一种车型,不具有通用性。

适用性。可以直接替换开式差速器,前驱后驱都可以用,没有适用性方面的限制。

范文七:汽车各部位工作原理---变速器和差速器原理汽车各部位工作原理:汽车各部位工作原理:

差速器具有三种功能。使发动机动力指向车轮相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因)本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器。车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组件上形成很大的压力。什么是差速器。差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。

阅读详情:现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距

离与后轮不同。

分时四轮

驱动系统在前轮和后轮之间没有差速器,相反,他们被锁止在一起,以便前轮和后轮以相同的平均速度转弯。这就是当四轮驱动系统啮合时这些车辆在混凝土路面上很难转弯的原因。以不同的速度旋转我们将介绍最简单的差速器——开式差速器。首先,我们需要了解一些术语:下面的图像标示的是开式差速器的组件。

阅读详情:当车辆笔直向前行驶时,两个驱动轮以相同的速度旋转。输入小齿轮转动齿圈和保护架,同时保护架内的小齿轮均不旋转,这样两侧齿轮均被有效锁定到保护架。geebee'svectoranimations提供动画注意,输入小齿轮是小于齿圈的齿轮,它是汽车上的末级减速齿轮。您可能听说过一些术语,如后轴比或主减速器传动比。这些是差速器中的齿轮比。如果主减速器传动比是4.10,则齿圈的齿数是

输入小齿轮齿数的4.10倍。汽车转弯时,车轮必须以不同的速度旋转。在上图中,可以看到汽车开始转弯时保护架上的小齿轮开始旋转,车轮以不同的速度移动。内侧齿轮比保护架旋转得慢,而外侧车轮比保护架旋转得快。开式差速器——直线行驶时开式差速器——转弯行驶时(1.1mb)

汽车中离合器的位置本文将介绍使用离合器的原因,使您了解离合器在汽车中的工作原理,并且讨论一下一些可以放置离合器的有趣的甚至可能令人意想不到的位置。离合器对于带有两个旋转轴的设备很有用。在这些设备中,一个轴通常由电机或皮带轮来驱动,而另一个轴用来驱动其他设备。例如在钻孔机中,一个轴由电机驱动,另一个轴驱动钻夹头。离合器连接了两个轴,这样它们可以锁定在一起,以同样的速度旋转,或者分离,以不同的速度旋转。基本离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论