版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴市诸暨市2024届八年级数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在四边形中,是边的中点,连接并延长,交的延长线于点,.添加一个条件使四边形是平行四边形,你认为下面四个条件中可选择的是()A. B. C. D.2.若分式有意义,的值可以是()A.1 B.0 C.2 D.-23.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到An.则△OA6A2020的面积是()A.505 B.504.5 C.505.5 D.10104.下列计算正确的是()A.a6÷a2=a3 B.(a3)2=a5C.25=±5 D.5.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.-2 C.-1 D.26.如图,是的角平分线,,,垂足分别为点,连接,与交于点,下列说法不一定正确的是()A. B. C. D.7.九年级二班45名同学在学校举行的“爱心涌动校园”募捐活动中捐款情况如下表捐款数(元)
10
20
30
40
50
捐款人数(人)
8
17
16
2
2
则全班捐款的45个数据,下列错误的()A.中位数是30元 B.众数是20元 C.平均数是24元 D.极差是40元8.我们规定:表示不超过的最大整数,例如:,,,则关于和的二元一次方程组的解为()A. B. C. D.9.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.2510.下列添括号正确的是()A. B.C. D.11.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或1212.下列四个图案中,不是轴对称图案的是()A. B.C. D.二、填空题(每题4分,共24分)13.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是________(填序号)14.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.15.将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.16.的相反数是_____.17.计算的结果等于_______.18.现有两根长为4cm,9cm的小木棒,打算拼一个等腰三角形,则应取的第三根小木棒的长是_____cm.三、解答题(共78分)19.(8分)如图1,在和中,,,.(1)若三点在同一直线上,连接交于点,求证:.(2)在第(1)问的条件下,求证:;(3)将绕点顺时针旋转得到图2,那么第(2)问中的结论是否依然成立?若成立,请证明你的结论:若不成立,请说明理由.20.(8分)如图,在中,是上的一点,若,,,,求的面积.21.(8分)如图,△ABC中,CE、AD分别垂直平分AB、BC,求△ABC各内角的大小.22.(10分)先化简,再求代数式的值,其中.23.(10分)如图,三个顶点的坐标分别为,,.(1)请画出关于轴成轴对称的图形,并写出、、的坐标;(2)求的面积;(3〉在轴上找一点,使的值最小,请画出点的位置.24.(10分)计算:3a2·(-b)-8ab(b-a)25.(12分)某校开展“我最喜爱的一项体育活动”调查活动,要求每名学生必选且只能选一项现随机抽查了名学生,并将其结果绘制成如下不完整的条形统计图和扇形统计图.请结合以上信息解答下列问题:(1)______;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为______;(4)已知该校共有3200名学生,请你估计该校最喜爱跑步活动的学生人数.26.如图,点,,,在一条直线上,,,,求证:.
参考答案一、选择题(每题4分,共48分)1、D【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【题目详解】添加A、,无法得到AD∥BC或CD=BA,故错误;添加B、,无法得到CD∥BA或,故错误;添加C、,无法得到,故错误;添加D、∵,,,∴,,∴,∵,∴,∴四边形是平行四边形.故选D.【题目点拨】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.2、C【分析】分式有意义的条件是:分母不等于0,据此解答.【题目详解】由题意知:,解得:,,,故选:C.【题目点拨】本题考查分式有意义的条件,熟悉知识点分母不等于0是分式有意义的条件即可.3、A【分析】由题意结合图形可得OA4n=2n,由2020÷4=505,推出OA2020=2020÷2=1010,A6到x轴距离为1,由此即可解决问题.【题目详解】解:由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2020÷2=1010,A6到x轴距离为1,则△OA6A2020的面积是×1010×1=505(m2).故答案为A.【题目点拨】本题主要考查点的坐标的变化规律,发现图形得出下标为4的倍数时对应长度即为下标的一半是解题的关键.4、D【题目详解】解:A、a6÷a2=a6-2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、25=5,表示25的算术平方根式5,25≠±5,故本选项错误;D、3-8故选D.【题目点拨】本题考查立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法.5、C【解题分析】试题分析:依据多项式乘以多项式的法则,进行计算(x+2)(x-1)=+x﹣2=+mx+n,然后对照各项的系数即可求出m=1,n=﹣2,所以m+n=1﹣2=﹣1.故选C考点:多项式乘多项式6、B【分析】根据角平分线性质得出DE=DF,证出Rt△AED≌Rt△AFD,推出AF=AE,根据线段垂直平分线性质得出即可.【题目详解】∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,故A选项不符合题意;∵∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵DE=DF,
∴A、D都在线段EF的垂直平分线上,∴EG=FG,故C选项不符合题意;
∴AD⊥EF,故D选项不符合题意;根据已知不能推出EG=AG,故B选项符合题意;故选:B【题目点拨】本题考查了线段垂直平分线性质,角平分线性质,全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.7、A【解题分析】经计算平均数是24元,众数是20元,中位数是20元,极差是40元.所以A选项错误.8、A【分析】根据的意义可得,和均为整数,两方程相减可求出,,将代入第二个方程可求出x.【题目详解】解:,∵表示不超过的最大整数,∴,和均为整数,∴x为整数,即,∴①-②得:,∴,,将代入②得:,∴,故选:A.【题目点拨】本题考查了新定义以及解二元一次方程组,正确理解的意义是解题的关键.9、C【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【题目详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【题目点拨】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.10、C【分析】添加括号,若括号前是负号,则括号内需要变号,根据这个规则判断下列各选项.【题目详解】A中,,错误;B中,,错误;C中,,正确;D中,,错误故选:C【题目点拨】本题考查添括号,注意去括号和添括号关注点一样,当括号前为负号时,去括号需要变号.11、B【解题分析】试题分析:考点:根据等腰三角形有两边相等,可知三角形的三边可以为2,2,5;2,5,5,然后根据三角形的三边关系可知2,5,5,符合条件,因此这个三角形的周长为2+5+5=1.故选B考点:等腰三角形,三角形的三边关系,三角形的周长12、B【分析】根据轴对称图形的定义逐项判断即得答案.【题目详解】解:A、是轴对称图案,故本选项不符合题意;B、不是轴对称图案,故本选项符合题意;C、是轴对称图案,故本选项不符合题意;D、是轴对称图案,故本选项不符合题意.故选:B.【题目点拨】本题考查了轴对称图形的定义,属于应知应会题型,熟知概念是关键.二、填空题(每题4分,共24分)13、①②④【分析】易证△ABD≌△EBC,可得可得①②正确,再根据角平分线的性质可求得,即,根据可求得④正确.【题目详解】①BD为△ABC的角平分线,
在△ABD和△EBC中,
△ABD≌△EBC,
①正确;
②BD为△ABC的角平分线,,BD=BC,BE=BA,
△ABD≌△EBC
②正确;③
为等腰三角形,
,
△ABD≌△EBC,
BD为△ABC的角平分线,,而EC不垂直与BC,
③错误;④正确.故答案为:①②④.【题目点拨】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.14、【解题分析】试题解析:所以故答案为15、y=2x+1.【解题分析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.16、【解题分析】只有符号不同的两个数互为相反数,由此可得的相反数是-,故答案为-.17、2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【题目详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算18、1【分析】题目给出两条小棒长为4cm和1cm打算拼一个等腰三角形,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【题目详解】解:当第三根是4cm时,其三边分别为4cm,4cm,1cm,不符合三角形三边关系,故舍去;当第三根是1cm时,其三边分别是1cm,1cm,4cm,符合三角形三边关系;∴第三根长1cm.故答案为:1.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)成立,理由见解析【分析】(1)根据SAS得出△BAD≌△CAE;(2)根据△BAD≌△CAE,得出∠ABD=∠ACE,根据直角三角形两锐角互余和对顶角相等即可得出答案;(3)延长BD交CE于点M,交AC于点F.根据SAS证明ΔBAD≌ΔCAE,得出∠ABD=∠ACE,根据直角三角形两锐角互余和对顶角相等即可得出答案.【题目详解】(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.∵AB=AC,AD=AE,∴ΔBAD≌ΔCAE.(2)∵ΔBAD≌ΔCAE,∴∠ABD=∠ACE.∵∠BAC=90°,∴∠ABD+∠AFB=90°.∵∠AFB=∠CFD,∴∠ACE+∠CFD=90°,∴∠CDF=90°,∴BD⊥CE.(3)成立.理由如下:延长BD交CE于点M,交AC于点F.∵∠BAC=∠DAE=90°,∴∠BAC-∠CAD=∠DAE-∠CAD,即∠BAD=∠CAE.∵AB=AC,AD=AE,∴ΔBAD≌ΔCAE,∴∠ABD=∠ACE.∵∠BAC=90°,∴∠ABD+∠AFB=90°.∵∠AFB=∠CFM,∴∠CMF=90°,∴BD⊥CE.【题目点拨】本题考查了全等三角形的判定与性质和三角形内角和定理等知识,根据已知得出△BAD≌△CAE是解题的关键.20、1【分析】先根据,,,利用勾股定理的逆定理求证是直角三角形,再利用勾股定理求出的长,然后利用三角形面积公式即可得出答案.【题目详解】解:,是直角三角形,,在中,,,.因此的面积为1.故答案为1.【题目点拨】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证是直角三角形.21、各内角都是60°【分析】根据线段垂直平分线的性质得到AB=AC=BC,根据等边三角形的性质解答.【题目详解】解:∵AD是BC的垂直平分线,∴AB=AC,同理,AC=BC,∴AB=AC=BC,∴△ABC为等边三角形,∴△ABC各内角的度数都是60°.【题目点拨】本题考查的是线段垂直平分线的性质、等边三角形的判定和性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.22、,.【分析】利用除法法则变形,约分后计算得到最简结果,把x的值代入计算即可求出值.【题目详解】,当时,原式.【题目点拨】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23、(1)图见解析;的坐标为、的坐标为、的坐标为;(2);(3)见解析.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称的点A1、B1、C1的位置,然后顺次连接即可;(2)依据割补法即可得到△ABC的面积.(3)找出点B关于y轴的对称点B′,连接B′A与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置.【题目详解】解:(1)△A1B1C1如图所示,,,;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度技术咨询合同:新能源开发与技术咨询服务2篇
- 2024年度许可使用合同使用范围及使用期限
- 二零二四年度电子商务平台知识产权保护合同
- 二零二四年度版权许可使用合同:电子书出版与数字版权交易(2024版)
- 二零二四年信息技术咨询与服务合同:科技公司与企事业单位之间的信息技术咨询服务协议
- 二零二四年市场调研全面委托合同
- 二零二四年度南雄新能源开发合作协议
- 二零二四年度茶楼租赁期内的广告位租赁合同
- 二零二四年管道铺设租赁合同
- 二零二四年度国际原油买卖合同(2024年)
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 2023~2024学年第一学期高一期中考试数学试题含答案
- 非遗漆扇扇子科普宣传
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- 浆砌块石施工方法
- 人员编制及岗位调整表.doc
- (推荐)浅谈初中学生英语写作中存在的问题、原因及解决策略
- 七年级历史教案:林则徐的教学设计
- 水面垃圾自动打捞船的设计 (全套图纸)
- 烟草企业安全生产标准化 规范
- 薄膜材料 第五章薄膜的形成、生长与结构
评论
0/150
提交评论