




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市济阳县2024届八年级数学第一学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,中,的垂直平分线与的角平分线相交于点,垂足为点,若,则()A. B. C. D.不能确定2.下列图形中,已知,则可得到的是(
)A. B. C. D.3.下列说法不正确的是()A.的平方根是 B.-9是81的一个平方根C. D.0.2的算术平方根是0.024.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75° B.55° C.40° D.35°5.下列四个图案中,不是轴对称图案的是()A. B. C. D.6.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cmC.8cm、6cm、3cm D.11cm、4cm、6cm7.下列运算正确的是A. B. C. D.8.如图,一次函数,的图象与的图象相交于点,则方程组的解是()A. B. C. D.9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△ADH中(
)A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为()A.2cm B.3cm C.5cm D.8cm二、填空题(每小题3分,共24分)11.在函数y=中,自变量x的取值范围是____.12.一次函数和的图像如图所示,其交点为,则不等式的解集是______________.13.如果点(,)关于x轴的对称点在第四象限内,则m的取值范围是________.14.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=______.15.如下图,在中,,的垂直平分线交于点,垂足为.当,时,的周长是__________.16.已知关于的分式方程的解为正数,则的取值范围为________.17.比较大小:________.(填“>”,“<”或“=”号)18.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.三、解答题(共66分)19.(10分)如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.(1)当点E在线段DC上时,求证:△BAE≌△BCG;(2)在(1)的条件下,若CE=2,求CG的长;(3)连接CF,当△CFG为等腰三角形时,求DE的长.20.(6分)列分式方程解应用题.为缓解市区至通州沿线的通勤压力,北京市政府利用既有国铁线路富余能力,通过线路及站台改造,开通了“京通号”城际动车组,每班动车组预定运送乘客1200人,为提高运输效率,“京通号”车组对动车车厢进行了改装,使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节,求改装后每节车厢可以搭载的乘客人数.21.(6分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.22.(8分)织金县某中学300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这300名学生共植树多少棵?23.(8分)(1)化简(2)先化简,再求值,其中x为整数且满足不等式组.24.(8分)如图,在平面直角坐标系中,直线l1:y=x+6与y轴交于点A,直线l2:y=kx+b与y轴交于点B,与l1相交于C(﹣3,3),AO=2BO.(1)求直线l2:y=kx+b的解析式;(2)求△ABC的面积.25.(10分)如图,小区有一块四边形空地,其中.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点作了垂直于的小路.经测量,,,.(1)求这块空地的面积;(2)求小路的长.(答案可含根号)26.(10分)因式分解:(1)(2)
参考答案一、选择题(每小题3分,共30分)1、B【分析】首先过点D作DF⊥AB于E,DF⊥AC于F,易证得Rt△DEB≌Rt△DFC(HL),即可得∠BDC=∠EDF,又由∠EAF+∠EDF=180°,即可求得答案.【题目详解】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故选:B.【题目点拨】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.2、B【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.【题目详解】解:.和的是对顶角,不能判断,此选项不正确;.和的对顶角是同位角,且相等,所以,此选项正确;.和的是内错角,且相等,故,不是,此选项错误;.和互为同旁内角,同旁内角相等,两直线不一定平行,此选项错误.故选.【题目点拨】本题考查平行线的判定,熟练掌握平行线的判定定理是解题关键.3、D【分析】依据平方根、算术平方根的性质进行判断即可.【题目详解】A、的平方根是,故A正确,与要求不符;B、-9是81的一个平方根,故B正确,与要求不符;C、,故C正确,与要求相符;D、0.2的算术平方根不是0.02,故D错误,与要求相符.故选D.【题目点拨】本题主要考查的是平方根、算术平方根的性质,熟练掌握平方根、算术平方根的性质是解题的关键.4、C【解题分析】试题分析:如图,根据平行线的性质可得∠1=∠4=75°,然后根据三角形的外角等于不相邻两内角的和,可知∠4=∠2+∠3,因此可求得∠3=75°-35°=40°.故选C考点:平行线的性质,三角形的外角性质5、B【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【题目详解】解:A.此图案是轴对称图形,不符合题意;B.此图案不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是轴对称图形,不符合题意;故选:B.【题目点拨】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【题目详解】A.∵2+2=4,∴2cm、2cm、4cm不能组成三角形,故不符合题意;B.∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C.∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D.∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【题目点拨】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.7、A【解题分析】选项A,选项B,,错误;选项C,,错误;选项D,,错误.故选A.8、A【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【题目详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组的解是,故选A.【题目点拨】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.9、B【解题分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【题目详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.
故选B.【题目点拨】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.10、A【解题分析】根据ASA得到△ACD≌△AED,再利用全等三角形的性质得到DE=CD即可求出.【题目详解】解:∵∠CAD=∠EAD,AD=AD,∠ADC=∠ADE,∴△ACD≌△AED,∴DE=CD=BC-BD=5-3=2,故选A.【题目点拨】本题考查了全等三角形的判定与性质,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.二、填空题(每小题3分,共24分)11、x≥-2且x≠1【分析】根据二次根式被开方数大于等于1,分式分母不等于1列式计算即可得解.【题目详解】解:由题意得,x+2≥1且2x≠1,
解得:x≥-2且x≠1.
故答案为:x≥-2且x≠1.【题目点拨】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为1;(3)当函数表达式是二次根式时,被开方数非负.12、【分析】化简不等式得,观察图象,直线y=3x+b落在直线y=ax-3上方的部分对应的x的取值范围即为所求.【题目详解】解:∵一次函数y=3x+b和y=ax-3的图象交点为P(-2,-5),
∴当时,,
∴不等式的解集为,
故答案为:.【题目点拨】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13、【分析】利用关于轴对称点的性质可知点P在第一象限,由此根据第一象限点的坐标的特征列不等式组即可解答.【题目详解】∵点P(,)关于轴的对称点在第四象限内,∴点P(,)在第一象限,∴,解得:.故答案为:.【题目点拨】本题主要考查了关于轴对称点的性质以及象限内点的坐标特点,正确记忆各象限内点的坐标符号是解题关键.14、6或1【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=1,P、C重合.【题目详解】解:①当AP=CB时,
∵∠C=∠QAP=90°,
在Rt△ABC与Rt△QPA中,,
∴Rt△ABC≌Rt△QPA(HL),
即;
②当P运动到与C点重合时,AP=AC,
在Rt△ABC与Rt△QPA中,
,∴Rt△QAP≌Rt△BCA(HL),
即,
∴当点P与点C重合时,△ABC才能和△APQ全等.
综上所述,AP=6或1.
故答案为6或1.【题目点拨】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.15、1【分析】根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB.【题目详解】解:∵DE是线段BC的垂直平分线,∠ACB=90°,
∴CD=BD,AD=BD.
又∵在△ABC中,∠ACB=90°,∠B=30°,
∴AC=AB,
∴△ACD的周长=AC+AB=AB=1,
故答案为:1.【题目点拨】本题考查了含30度角直角三角形的性质和垂直平分线的性质,直角三角形中30°的锐角所对的直角边等于斜边的一半,培养学生运用定理进行推理论证的能力.16、k>﹣2且k≠﹣1【分析】先解分式方程,然后根据分式方程解的情况列出不等式即可求出结论.【题目详解】解:解得:x=2+k∵关于的分式方程的解为正数,∴∴解得:k>﹣2且k≠﹣1故答案为:k>﹣2且k≠﹣1.【题目点拨】此题考查的是根据分式方程根的情况求参数的取值范围,掌握分式方程的解法和增根的定义是解决此题的关键.17、<【分析】根据5<9可得即,进而可得,两边同时除以2即可得到答案.【题目详解】解:∵5<9,∴,即,∴,∴,故答案为:<.【题目点拨】此题主要考查了二次根式的大小比较,根据5<9可得即,然后利用不等式的基本性质变形即可.18、(,).【解题分析】解:作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M是ON的中点,∴OM=1.5,∴PM=,∴P(,).故答案为:(,).点睛:本题考查了轴对称﹣最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.三、解答题(共66分)19、(1)证明见解析;(2)CG=10;(3)当△CFG为等腰三角形时,DE的长为4或8或1.【分析】(1)由正方形的性质得出,AB=BC,BE=BG,∠ABC=∠EBG=90°,易证∠ABE=∠CBG,由SAS证得△BAE≌△BCG;
(2)由△BAE≌△BCG,得出AE=CG,DE=CD−CE=6,由勾股定理得出,即可得出结果;
(3)①当CG=FG时,易证AE=BE,由HL证得Rt△ADE≌Rt△BCE,得出DE=CE=DC=4;
②当CF=FG时,点E与点C重合,DE=CD=8;
③当CF=CG时,点E与点D重合时,DE=0;
④当CF=CG,点E在DC延长线上时,DE=1.【题目详解】(1)证明∵四边形ABCD和四边形BEFG都是正方形,∴AB=BC,BE=BG,∠ABC=∠EBG=90°,∴∠ABC﹣∠EBC=∠EBG﹣∠EBC,即∠ABE=∠CBG,在△BAE和△BCG中,,∴△BAE≌△BCG(SAS);(2)解:∵△BAE≌△BCG,∴AE=CG.∵四边形ABCD正方形,∴AB=AD=CD=8,∠D=90°,∴DE=CD﹣CE=8﹣2=6,∴AE10,∴CG=10;(3)解:①当CG=FG时,如图1所示:∵△BAE≌△BCG,∴AE=CG.∵四边形BEFG是正方形,∴FG=BE,∴AE=BE,在Rt△ADE和Rt△BCE中,,∴Rt△ADE≌Rt△BCE(HL),∴DE=CEDC8=4;②当CF=FG时,如图2所示:点E与点C重合,即正方形ABCD和正方形BEFG的一条边重合,DE=CD=8;③当CF=CG时,如图3所示:点E与点D重合,DE=0;∵点E与点D不重合,∴不存在这种情况;④CF=CG,当点E在DC延长线上时,如图4所示:DE=CD+CE=1;综上所述:当△CFG为等腰三角形时,DE的长为4或8或1.【题目点拨】本题是四边形综合题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质、分类讨论等知识;熟练掌握正方形的性质、证明三角形全等是解题的关键.20、改装后每节车厢可以搭载乘客200人.【分析】设改装前每节车厢乘坐x人,根据题目条件“使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节”列出分式方程即可解决问题.【题目详解】解:设改装前每节车厢乘坐x人,由题意得:,解得:x=120,经检验:x=120是分式方程的解,则改装后每节车厢可以搭载的乘客人数=120×=200人,答:改装后每节车厢可以搭载乘客200人.【题目点拨】本题考查了分式方程的应用,正确理解题意,找到合适的等量关系是解决问题的关键.21、(1)(2)见解析;(3)P(0,2).【解题分析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.22、(1)20(人),2(人);(2)众数是1,中位数是1.(3)估计这300名学生共植树1190棵.【解题分析】(1)根据B组人数,求出总人数即可解决问题.(2)根据众数,中位数的定义即可解决问题.(3)利用样本估计总体的思想解决问题即可.【题目详解】解:(1)总人数=8÷40%=20(人),D类人数=20×10%=2(人).(2)众数是1,中位数是1.(3)(棵),1.3×300=1190(棵).答:估计这300名学生共植树1190棵.【题目点拨】本题考查条形统计图,扇形统计图,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)x+1;(1),当x=﹣1时,原式=1.【分析】(1)根据分式的混合运算顺序和运算法则计算可得;(1)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出不等式组的整数解,从中找到符合分式的整数,代入计算可得.【题目详解】(1)原式=x+1;(1)原式•,解不等式组解不等式①得x<1;解不等式②得x≥-1;∴不等式组的解集是﹣1≤x<1,所以该不等式组的整数解为﹣1、﹣1、0、1,因为x≠±1且x≠0,所以x=﹣1,则原式1.【题目点拨】本题主要考查分式的化简求值与解不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式组的能力.24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电池生产碳排放减少考核试卷
- 潍坊职业学院《基础朝鲜语》2023-2024学年第一学期期末试卷
- 武汉工程科技学院《俄语听译》2023-2024学年第二学期期末试卷
- 酒泉职业技术学院《建筑表现基础》2023-2024学年第二学期期末试卷
- 江苏省如皋市达标名校2024-2025学年下学期第一次大考物理试题含解析
- 山东省济宁兖州区七校联考2024-2025学年初三下学期月考试卷(一)化学试题含解析
- 南京航空航天大学《地理与文化》2023-2024学年第一学期期末试卷
- 南京工业职业技术大学《工程项目管理软件》2023-2024学年第二学期期末试卷
- 辽宁科技大学《体育锻炼指导(三)》2023-2024学年第二学期期末试卷
- 内蒙古自治区根河市2025届第二学期初三年级期末统一考试物理试题含解析
- 老年智能手环产品需求说明书(PRD)
- T∕AOPA 0018-2021 直升机临时起降场选址与建设规范
- 高考英语高频688词汇(核心版本)
- 七八年级人教古诗词集锦
- JAVAweb开发课件
- 涪陵榨菜集团盈利能力分析工商管理专业
- 35kv配电系统继电保护方案设计(共33页)
- 中国收藏家协会个人会员入会申请表
- 医院处方笺模板
- 底盘拆装与调试教案
- 三聚氰胺事件PPT课件
评论
0/150
提交评论