重庆市西南大附属中学2024届数学八上期末达标检测试题含解析_第1页
重庆市西南大附属中学2024届数学八上期末达标检测试题含解析_第2页
重庆市西南大附属中学2024届数学八上期末达标检测试题含解析_第3页
重庆市西南大附属中学2024届数学八上期末达标检测试题含解析_第4页
重庆市西南大附属中学2024届数学八上期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市西南大附属中学2024届数学八上期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3·a4=a12 B.(a3)2=a5C.(-3a2)3=-9a6 D.(-a2)3=-a62.三边长为a、b、c,则下列条件能判断是直角三角形的是()A.a=7,b=8,c=10 B.a=,b=4,c=5C.a=,b=2,c= D.a=3,b=4,c=63.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是().A.5 B.6 C.12 D.164.某市为了处理污水需要铺设一条长为2000米的管道,实际施工时,×××××××,设原计划每天铺设管道米,则可列方程,根据此情景,题目中的“×××××××”表示所丢失的条件,这一条件为()A.每天比原计划多铺设10米,结果延期10天完成任务B.每天比原计划少铺设10米,结果延期10天完成任务C.每天比原计划少铺设10米,结果提前10天完成任务D.每天比原计划多铺设10米,结果提前10天完成任务5.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A.80° B.50° C.30° D.20°6.已知(4+)•a=b,若b是整数,则a的值可能是()A. B.4+ C.4﹣ D.2﹣7.下列条件中,不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.∠A=∠B=∠CC.∠B=50°,∠C=40° D.a=5,b=12,c=138.如果关于的分式方程无解,那么的值为()A.4 B. C.2 D.9.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A. B. C. D..10.如果与是同类项,则()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).12.用反证法证明在△ABC中,如果AB≠AC,那么∠B≠∠C时,应先假设________.13.按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是______________.14.若最简二次根式与能够合并,则=__________.15.如图,是等边三角形,,、相交于点,于,,,则的长是______.16.因式分解:=____.17.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).18.将点P(-1,2)向左平移2个单位,再向上平移1个单位所得的对应点的坐标为_____.三、解答题(共66分)19.(10分)某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,同时在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,则超出5件的部分可按原价的六折进行优惠;设需要租用()件服装,选择甲店则需要元,选择乙店则需要元,请分别求出,关于的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?20.(6分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?21.(6分)证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.22.(8分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问:DE,AD,BE有怎样的等量关系?请写出这个等量关系,并加以证明.23.(8分)甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x(分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)先到达终点(填“甲”或“乙”);甲的速度是米/分钟;(2)甲与乙何时相遇?(3)在甲、乙相遇之前,何时甲与乙相距250米?24.(8分)已知:在中,,点在上,连结,且.(1)如图1,求的度数;(2)如图2,点在的垂直平分线上,连接,过点作于点,交于点,若,,求证:是等腰直角三角形;(3)如图3,在(2)的条件下,连接,过点作交于点,且,若,求的长.25.(10分)如图,等腰中,,点是上一动点,点在的延长线上,且,平分交于,连.(1)如图1,求证:;(2)如图2,当时,求证:.26.(10分)解分式方程(1).(2)先化简,再求值:,其中.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据同底数幂的乘法、幂的乘方、积的乘方等知识分别计算得出答案.【题目详解】A.a3·a4=a7,计算错误,不合题意;B.(a3)2=a6,计算错误,不合题意;C.(-3a2)3=-27a6,计算错误,不合题意;D.(-a2)3=-a6,计算正确,符合题意.故选:D.【题目点拨】此题主要考查了同底数幂的乘法、幂的乘方、积的乘方等知识,正确掌握相关运算法则是解题关键.2、B【分析】根据勾股定理逆定理对每个选项一一判断即可.【题目详解】A、∵72+82≠102,∴△ABC不是直角三角形;B、∵52+42=()2,∴△ABC是直角三角形;C、∵22+()2≠()2,∴△ABC不是直角三角形;D、∵32+42≠62,∴△ABC不是直角三角形;故选:B.【题目点拨】本题主要考查勾股定理逆定理,熟记定理是解题关键.3、C【分析】设此三角形第三边长为x,根据三角形的三边关系求出x的取值范围,找到符合条件的x值即可.【题目详解】设此三角形第三边长为x,则10-4﹤x﹤10+4,即6﹤x﹤14,四个选项中只有12符合条件,故选:C.【题目点拨】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边,熟练掌握三角形的三边关系是解答的关键.4、D【分析】工作时间=工作总量÷工作效率.那么表示原来的工作时间,那么就表示现在的工作时间,10就代表原计划比现在多的时间.【题目详解】解:原计划每天铺设管道米,那么就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间−实际用的时间=10天,那么就说明每天比原计划多铺设10米,结果提前10天完成任务.

故选:D.【题目点拨】本题主要考查的是分式方程的实际应用,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.5、D【题目详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.6、C【解题分析】找出括号中式子的有理化因式即可得.【题目详解】解:(4+)×(4-)=42-()2=16-3=13,是整数,所以a的值可能为4-,故选C【题目点拨】本题考查了有理化因式,正确选择两个二次根式,使它们的积符合平方差公式的结构特征是解题的关键.7、A【题目详解】∵∠A:∠B:∠C=3:4:5,∴∠A=180°÷(3+4+5)×3=45°,∠B=180°÷(3+4+5)×4=60°,∠C=180°÷(3+4+5)×5=75°,∴△ABC不是直角三角形,故A符合题意;∵∠A=∠B=∠C,∴∠A=30°,∠B=60°,∠C=90°,∴△ABC是直角三角形,故B不符合题意;∵∠B=50°,∠C=40°,∴∠A=180°-50°-40°=90°,∴△ABC是直角三角形,故C不符合题意;∵a=5,b=12,c=13,∴a2+b2=c2,∴△ABC是直角三角形,故D不符合题意;故选A8、B【分析】先解方程,去分母,移项合并得x=-2-m,利用分式方程无解得出x=2,构造m的方程,求之即可.【题目详解】解关于的分式方程,去分母得m+2x=x-2,移项得x=-2-m,分式方程无解,x=2,即-2-m=2,m=-4,故选择:B.【题目点拨】本题考查分式方程无解问题,掌握分式方程的解法,会处理无解的问题,一是未知数系数有字母,让系数为0,一是分式方程由增根.9、D【解题分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.对各选项图形分析判断后可知,选项D是中心对称图形.故选D.10、C【分析】根据同类项的定义:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,列出二元一次方程组,即可得出的值.【题目详解】由题意,得解得故选:C.【题目点拨】此题主要考查对同类项的理解,熟练掌握,即可解题.二、填空题(每小题3分,共24分)11、1.【解题分析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.12、∠B=∠C【分析】根据反证法的一般步骤即可求解.【题目详解】用反证法证明在△ABC中,如果AB≠AC,求证∠B≠∠C,第一步应是假设∠B=∠C.故答案为:∠B=∠C【题目点拨】本题考查的反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判断假设不不正确,从而肯定原命题的结论正确.13、xy=z【解题分析】试题分析:观察数列可发现所以这一列数据所揭示的规律是前两个数的积等于第三个数.根据规律x、y、z表示这列数中的连续三个数,则x、y、z满足的关系式是xy=z.考点:规律探究题.14、5【解题分析】根据最简二次根式的性质即可进行求解.【题目详解】依题意得a=2a-5,解得a=5.【题目点拨】此题主要考查二次根式的性质,解题的关键是熟知同类最简二次根式的被开方数相同.15、1【分析】由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=6,AD=BE.即可求解.【题目详解】∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠ACD=60°;

又∵AE=CD,

在△ABE和△CAD中,,

∴△ABE≌△CAD;

∴BE=AD,∠CAD=∠ABE;

∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;

∵BQ⊥AD,

∴∠AQB=90°,则∠PBQ=90°-60°=30°;

∵PQ=3,

∴在Rt△BPQ中,BP=2PQ=6;

又∵PE=1,

∴AD=BE=BP+PE=1.

故答案为:1.【题目点拨】本题主要考查了全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.16、【分析】根据平方差公式:因式分解即可.【题目详解】解:==故答案为:.【题目点拨】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.17、甲.【解题分析】乙所得环数的平均数为:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.18、(-1,1)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【题目详解】原来点的横坐标是-1,纵坐标是2,向左平移2个单位,再向上平移1个单位得到新点的横坐标是-1−2=-1,纵坐标为2+1=1.即对应点的坐标是(-1,1).故答案填:(-1,1).【题目点拨】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题(共66分)19、(1)甲店每件租金50元,乙店每件租金60元;(2),;(3)租用30件时,甲乙两店的租金相同【分析】(1)设甲店每件租金x元,乙店每件租金y元,根据“在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元”列出方程组进行求解即可;(2)根据甲、乙两店的优惠政策进行求解即可得;(3)根据两店租金相同,列出方程求解即可.【题目详解】解:(1)设甲店每件租金x元,乙店每件租金y元,由题意可得,解得,答:甲店每件租金50元,乙店每件租金60元.(2)甲店:,乙店:当不超过5件时,则有当超过5件时,则有,综上:.(3)由,解得,答:租用30件时,甲乙两店的租金相同.【题目点拨】本题考查了二元一次方程组的实际应用,一次函数的实际应用问题,解题的关键是根据题意列出方程或函数关系式.20、(1)每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买1辆A型车和1辆B型车.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.构建方程组即可解决问题;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥110,求出整数解即可;【题目详解】(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥110,解得a≤1,∴2≤a≤1.a是正整数,∴a=2或a=1.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买1辆A型车和1辆B型车;【题目点拨】本题考查一元一次不等式的应用,二元一次方程组的应用等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、见解析【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【题目详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)【题目点拨】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.22、(1)见解析;(2)见解析;(3)DE=BE-AD,证明见解析【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;

(2)与(1)证法类似可证出∠DAC=∠BCE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,从而有DE=CE-CD=AD-BE;

(3)与(1)证法类似可证出∠DAC=∠BCE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,于是有DE=CD-CE=BE-AD.【题目详解】(1)证明:∵AD⊥MN,BE⊥MN∴∠ADC=∠CEB=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠ECB+∠DCA=90°∴∠DAC=∠ECB在△ACD和△CBE中,∵∴△ACD≌△CBE(AAS)∴CE=AD,CD=BE∵DE=CE+CD∴DE=AD+BE(2)证明:与(1)一样可证明△ADC≌△CEB,

∴CD=BE,AD=CE,

∴DE=CE-CD=AD-BE;(3)DE=BE-AD.证明如下:证明:证明:∵AD⊥MN,BE⊥MN∴∠ADC=∠CEB=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠ECB+∠DCA=90°∴∠DAC=∠ECB在△ACD和△CBE中,∵∴△ACD≌△CBE(AAS)∴CE=AD,CD=BE∴DE=CD-CE=BE-AD;【题目点拨】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.23、(1)乙;1米/分钟;(2)12分钟时相遇;(3)2分钟时【分析】(1)依据函数图象可得到两人跑完全程所用的时间,从而可知道谁先到达终点,依据速度=路程÷时间可求得甲的速度;(2)先求得甲的路程与时间的函数关系式,然后求得10<x<16时,乙的路程与时间的函数关系式,最后,再求得两个函数图象交点坐标即可;(3)根据题意列方程解答即可.【题目详解】解:(1)由函数图象可知甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点;甲的速度==1米/分钟.故答案为:乙;1.(2)设甲跑的路程y(米)与时间x(分钟)之间的函数关系式为y=kx,根据图象,可得y=x=1x,设10分钟后(即10<x<16),乙跑的路程y(米)与时间x(分钟)之间的函数关系式为:y=kx+b.根据图象,可得,解得,所以10分钟后乙跑的路程y(米)与时间x(分钟)之间的函数关系式,联立甲乙两人的函数关系式解得,答:甲与乙在12分钟时相遇;(3)设此时起跑了x分钟,根据题意得,解得x=2.答:在甲、乙相遇之前,2分钟时甲与乙相距1米.【题目点拨】本题考查的是一次函数的实际应用中的行程问题,解决此类问题,需要结合解析式、图象与问题描述的实际情况,充分理解题意,熟练进行运算才比较简便.24、(1);(2)证明见解析;(3).【分析】(1)根据已知推出,然后利用三角形外角的性质有,则,然后利用即可求解;(2)由垂直平分线的性质得到,从而有,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论