版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省德安县塘山中学2024届数学八上期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10-6米 B.3.4×10-6米 C.34×10-5米 D.3.4×10-5米2.下列各式从左边到右边的变形,是因式分解的为()A. B.C. D.3.下列运算中正确的是()A. B. C. D.4.若有一个外角是钝角,则一定是()A.钝角三角形 B.锐角三角形C.直角三角形 D.以上都有可能5.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.96.已知点都在直线上,则的大小关系()A. B. C. D.7.如图,△DEF为直角三角形,∠EDF=90°,△ABC的顶点B,C分别落在Rt△DEF两直角边DE和DF上,若∠ABD+∠ACD=55°,则∠A的度数是()A.30° B.35° C.40° D.55°8.如图,已知,添加一个条件,使得,下列条件添加错误的是()A. B. C. D.9.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则下列等式不正确的是()A.AB=AC B.BE=DC C.AD=DE D.∠BAE=∠CAD10.下列运算正确的是()A.x2+x2=2x4 B.a2•a3=a5 C.(﹣2x2)4=16x6 D.(x+3y)(x﹣3y)=x2﹣3y2二、填空题(每小题3分,共24分)11.我县属一小为了师生继承瑶族非物质文化遗产的长鼓舞,决定购买一批相关的长鼓.据了解,中长鼓的单价比小长鼓的单价多20元,用10000元购买中长鼓与用8000元购买小长鼓的数量相同,则中长鼓为_______元,小长鼓的单价为_______元.12.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为_______.13.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.14.方程的解是.15.计算:______.16.若等腰三角形顶角为70°,则底角为_____.17.使代数式有意义的x的取值范围是_____.18.多项式中各项的公因式是_________.三、解答题(共66分)19.(10分)已知中,.(1)如图1,在中,,连接、,若,求证:(2)如图2,在中,,连接、,若,于点,,,求的长;(3)如图3,在中,,连接,若,求的值.20.(6分)如图,在△ABC中,AC⊥BC,AD平分∠BAC,DE⊥AB于点E,求证:直线AD是CE的垂直平分线.21.(6分)如图,在中,,,,在上,且,过点作射线(AN与BC在AC同侧),若动点从点出发,沿射线匀速运动,运动速度为/,设点运动时间为秒.(1)经过_______秒时,是等腰直角三角形?(2)当于点时,求此时的值;(3)过点作于点,已知,请问是否存在点,使是以为腰的等腰三角形?对存在的情况,请求出t的值,对不存在的情况,请说明理由.22.(8分)芳芳计算一道整式乘法的题:(2x+m)(5x-4),由于芳芳将第一个多项式中的“+m”抄成“-m”,得到的结果为10x2-33x+1.(1)求m的值;(2)请解出这道题的正确结果.23.(8分)如图,在锐角三角形ABC中,AB=13,AC=15,点D是BC边上一点,BD=5,AD=12,求BC的长度.24.(8分)如图,在四边形ABCD中,,∠A=∠C,CD=2AD,F为CD的中点,连接BF(1)求证:四边形ABCD是平行四边形.(2)求证:BF平分∠ABC.25.(10分)解方程组:26.(10分)小明的家离学校1600米,一天小明从家出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上他,已知爸爸的速度是小明速度的2倍,求小明的速度.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题解析:0.0000034米米.故选B.2、B【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【题目详解】A.,结果不是整式积的形式,故错误;B.,正确;C.,是多项式乘法,不是因式分解,错误;D.,左边是单项式,不是因式分解,错误;故选:B【题目点拨】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.3、D【分析】根据完全平方公式、同底数幂的乘法除法法则、幂的乘方法则计算即可.【题目详解】A、,该选项错误;B、,该选项错误;C、,该选项错误;D、,该选项正确;故选:D.【题目点拨】本题考查了完全平方公式、同底数幂的乘法除法法则、幂的乘方法则,熟练掌握运算法则是解决本题的关键.4、D【分析】利用三角形的外角和相邻的内角互补即可得出答案.【题目详解】解:∵三角形的外角和相邻的内角互补,∴若有一个外角是钝角,则△ABC有一个内角为锐角,∴△ABC可能是钝角三角形,也可能是锐角三角形,也可能是直角三角形,故答案为:D.【题目点拨】本题考查了三角形的内角与外角的性质,解题的关键是熟知三角形的外角和相邻的内角互补的性质.5、D【分析】找到90左右两边相邻的两个平方数,即可估算的值.【题目详解】本题考查二次根式的估值.∵,∴,∴.一题多解:可将各个选项依次代入进行验证.如下表:选项逐项分析正误A若×B若×C若×D若√【题目点拨】本题考查二次根式的估算,找到被开方数左右两边相邻的两个平方数是关键.6、A【分析】先根据直线y=−1x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【题目详解】∵直线y=−1x+b,k=−1<0,∴y随x的增大而减小,又∵−2<−1<1,∴y1>y2>y1.故选:A.【题目点拨】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.7、B【分析】由∠EDF=90°,则∠DBC+∠DCB=90°,则得到∠ABC+∠ACB=145°,根据三角形内角和定理,即可得到∠A的度数.【题目详解】解:∵∠EDF=90°,∴∠DBC+∠DCB=90°,∵∠ABD+∠ACD=55°,∴∠ABC+∠ACB=90°+55°=145°,∴∠A=;故选:B.【题目点拨】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和定理进行解题.8、B【分析】根据三角形全等的判定定理添加条件即可.【题目详解】若添加,则可根据“AAS”判定两三角形全等;若添加,则有两组对应边相等,但相等的角不是夹角,不能判定两三角形全等;若添加,则可根据“SAS”判定两三角形全等;若添加,则可根据“ASA”判定两三角形全等;故选:B【题目点拨】本题考查的是判定两个三角形全等的条件,需要注意的是,当两边对应相等,但相等的角不是夹角时,是不能判定两个三角形全等的.9、C【分析】由全等三角形的性质可得到对应边、对应角相等,结合条件逐项判断即可.【题目详解】∵△ABE≌△ACD,
∴AB=AC,AD=AE,BE=DC,∠BAE=∠CAD,∴A、B、D正确,AD与DE没有条件能够说明相等,∴C不正确,
故选:C.【题目点拨】本题主要考查了全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.10、B【解题分析】试题分析:A、根据合并同类项计算,原式=2;B、同底数幂的乘法,底数不变,指数相加,则计算正确;C、幂的乘方法则,底数不变,指数相乘,原式=16;D、根据平方差公式进行计算,原式==.考点:(1)同底数幂的计算;(2)平方差公式二、填空题(每小题3分,共24分)11、100;1【分析】设小长鼓的单价为x元,则中长鼓的单价为(x+20)元,根据“用10000元购买中长鼓与用8000元购买小长鼓的数量相同”列出分式方程,并解方程即可得出结论.【题目详解】解:设小长鼓的单价为x元,则中长鼓的单价为(x+20)元根据题意可得解得:x=1经检验:x=1是原方程的解中长鼓的单价为1+20=100元故答案为:100;1.【题目点拨】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.12、米【分析】河水的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【题目详解】如图,在Rt△ABC中,AC=1.5cm.CD=AB-BC=3.5m.
设河深BC=xm,则AB=3.5+x米.
根据勾股定理得出:
∵AC3+BC3=AB3
∴1.53+x3=(x+3.5)3
解得:x=3.
【题目点拨】本题考查了勾股定理在实际生活中的应用,根据勾股定理可以把求线段的长的问题转化为解方程得问题是解题的关键.13、1【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=1°.【题目详解】∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=1°.故答案为1.【题目点拨】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.14、x=1.【分析】根据解分式方程的步骤解答即可.【题目详解】去分母得:2x=3x﹣1,解得:x=1,经检验x=1是分式方程的解,故答案为x=1.【题目点拨】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.15、【分析】先计算积的乘方,再利用单项式除单项式法则计算.【题目详解】解:,故答案为:.【题目点拨】本题考查积的乘方公式,单项式除单项式.
单项式除以单项式,把单项式的系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.16、55°【分析】等腰三角形的两个底角相等,三角形的内角和是180°,则一个底角度数=(180°−顶角度数)÷1.【题目详解】等腰三角形顶角为70°,则底角为(180°−70°)÷1=110°÷1=55°.故答案为55°.【题目点拨】解决本题的关键是明确等腰三角形的两个底角相等,三角形的内角和是180°.17、x≥0且x≠2【解题分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得2x-1≠0,再解不等式即可.【题目详解】由题意得:x⩾0且2x−1≠0,解得x⩾0且x≠,故答案为x⩾0且x≠.【题目点拨】本题考查了二次根式有意义的条件,分式有意义的条件.牢记分式、二次根式成立的条件是解题的关键.18、2ab【分析】先确定系数的最大公约数,再确定各项的相同字母,并取相同字母的最低指数次幂.【题目详解】解:系数的最大公约数是2,各项相同字母的最低指数次幂是ab,所以公因式是2ab,故答案为:2ab.【题目点拨】本题主要考查公因式的定义,准确掌握公因式的确定方法是解题的关键.三、解答题(共66分)19、(1)详见解析;(2);(3).【分析】(1)证∠EAC=∠DAB.利用SAS证△ACE≌△ABD可得;(2)连接BD,证,证△ACE≌△ABD可得,CE=BD=5,利用勾股定理求解;(3)作CE垂直于AC,且CE=AC,连接AE,则,利用勾股定理得AE,BE=,根据(1)思路得AD=BE=.【题目详解】(1)证明:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,即∠EAC=∠DAB.在△ACE与△ABD中,,∴△ACE≌△ABD(SAS),∴;(2)连接BD因为,,所以是等边三角形因为,ED=AD=AE=4因为所以同(1)可知△ACE≌△ABD(SAS),所以,CE=BD=5所以所以BE=(3)作CE垂直于AC,且CE=AC,连接AE,则所以AE=因为所以AE又因为所以所以因为所以BC=CD,因为同(1)可得△ACD≌△ECB(SAS)所以AD=BE=所以【题目点拨】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.20、见解析.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【题目详解】解:证明:∵DE⊥AB,
∴∠AED=90°=∠ACB,
又∵AD平分∠BAC,
∴∠DAE=∠DAC,
∵AD=AD,
∴△AED≌△ACD,
∴AE=AC,
∵AD平分∠BAC,
∴AD⊥CE,
即直线AD是线段CE的垂直平分线.【题目点拨】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.21、(1)6;(1)8;(3)1【分析】(1)得出两腰AM=AP时,即可得出答案;(1)根据垂直的定义和同角的余角相等得到∠CBA=∠AMP,证明△ACB≌△PAM,得出比例式,代入求出AP,即可得出答案;(3)由勾股定理求出BM的值,可知BD>BM,则不存在点P使的等腰三角形,又由AM<BM,则存在点P使的等腰三角形,可证△MCB≌△PAM得PA的长,即可求出t的值.【题目详解】解:(1)∵∠PAM=90°,当是等腰直角三角形时,则有PA=AM=6cm,∴t=6÷1=6(s)故答案为:6;(1)∵,∴∠AQM=90°,∠PAM=90°,∴∠AMP+∠BAC=90°,又∵∠C=90°,∴∠CBA+∠BAC=90°,∴∠AMP=∠CBA,在△ACB和△PAM中,,∴△ACB≌△PAM(ASA),∴PA=AC,∵,∴,∴t=8÷1=8(s),此时的值为8;(3)∵,,,,∴,由勾股定理得:,∵,,∴BD>BM,则不存在点P使的等腰三角形,又∵AM<BM,则存在点P使的等腰三角形,在Rt△MCB和Rt△PAM中,,∴△MCB≌△PAM(HL),∴PA=CM=1cm,∴t=1÷1=1(s),此时的值为1.【题目点拨】本题考查了等腰直角三角形的性质、勾股定理和全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.22、(1)m=5;(2)【分析】(1)化简,根据一次项的系数和常数项即可求出m的值;(2)将代入原式求解即可.【题目详解】(1).∴解得(2)将代入原式中原式.【题目点拨】本题考查了整式的运算问题,掌握整式混合运算法则是解题的关键.23、14【分析】根据勾股定理的逆定理可判断出△ADB为直角三角形,即∠ADB=90°,在Rt△ADC中利用勾股定理可得出CD的长度从而求出BC长.【题目详解】在△ABD中,∵AB=13,BD=5,AD=12,∴,∴∴∠ADB=∠ADC=90º在Rt△ACD中,由勾股定理得,∴BC=BD+CD=5+9=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年计算机信息服务相关项目运行指导方案
- 2024煤炭应急供应 backup 合同
- 京东库存管理
- 2025年沪教版七年级地理上册月考试卷含答案
- 2025年鲁教新版选修2地理上册月考试卷含答案
- 2025厂房出售买卖合同范本(智能制造配套)3篇
- 2025年人教A新版选修化学上册阶段测试试卷含答案
- 2024物流服务合同协议书
- 专项房地产策划咨询与服务协议模板
- 2025年度网络安全服务合同补充协议3篇
- 技术成果转移案例分析报告
- 部编版二年级下册道德与法治第二单元《我们好好玩》全部教案
- 建筑设计行业项目商业计划书
- 幼儿园利剑护蕾专项行动工作方案总结与展望
- 骶尾部藏毛疾病诊治中国专家共识(2023版)
- 合同信息管理方案模板范文
- 【高新技术企业所得税税务筹划探析案例:以科大讯飞为例13000字(论文)】
- 幽门螺旋杆菌
- 大足石刻十八讲
- 小学音乐-铃儿响叮当教学设计学情分析教材分析课后反思
- 055风险管理计划表
评论
0/150
提交评论