2024届北京市海淀区数学八上期末调研模拟试题含解析_第1页
2024届北京市海淀区数学八上期末调研模拟试题含解析_第2页
2024届北京市海淀区数学八上期末调研模拟试题含解析_第3页
2024届北京市海淀区数学八上期末调研模拟试题含解析_第4页
2024届北京市海淀区数学八上期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市海淀区数学八上期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列命题中,逆命题是真命题的是()A.全等三角形的对应角相等; B.同旁内角互补,两直线平行;C.对顶角相等; D.如果,那么2.已知如图,为四边形内一点,若且,,则的度数是()A. B. C. D.3.下列运算正确的是()A.(3a2)3=27a6 B.(a3)2=a5C.a3•a4=a12 D.a6÷a3=a24.下列代数运算正确的是()A. B. C. D.5.分式方程的解是()A.x=1 B.x=2 C.x=0 D.无解.6.如图,若,则的度数是()A. B. C. D.7.如图,△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点P,过点P作DEBC分别交AB,AC于点D,E,则△ADE的周长为(

)A.10 B.12 C.14 D.不能确定8.下列图案中,不是轴对称图形的是()A. B. C. D.9.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,CE平分∠ACB,CE交BD于点O,那么图中的等腰三角形个数()A.4 B.6 C.7 D.810.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2 D.a(a﹣b)=a2﹣ab11.下列逆命题是真命题的是()A.如果x=y,那么x2=y2B.相等的角是内错角C.有三个角是60°的三角形是等边三角形D.全等三角形的对应角相等12.如果(x+y﹣4)2+=0,那么2x﹣y的值为()A.﹣3 B.3 C.﹣1 D.1二、填空题(每题4分,共24分)13.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠AEB的度数是.14.已知:如图,∠1=∠2=∠3=50°则∠4的度数是__.15.如图,已知方格纸中是个相同的正方形,则____度.16.下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有__个.17.如图,在△ABC中,∠A=70°.按下列步骤作图:①分别以点B,C为圆心,适当长为半径画弧,分别交BA,BC,CA,CB于点D,E,F,G;②分别以点D,E为圆心,大于DE为半径画弧,两弧交于点M;③分别以点F,G为圆心,大于FG为半径画弧,两弧交于点N;④作射线BM交射线CN于点O.则∠BOC的度数是_____.18.已知,则的值为__________.三、解答题(共78分)19.(8分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.20.(8分)如图,已知直线1经过点A(0,﹣1)与点P(2,3).(1)求直线1的表达式;(2)若在y轴上有一点B,使△APB的面积为5,求点B的坐标.21.(8分)如图,在四边形中,,是的中点,连接并延长交的延长线于点,点在边上,且.(1)求证:≌.(2)连接,判断与的位置关系并说明理由.22.(10分)甲、乙、丙三明射击队员在某次训练中的成绩如下表:队员成绩(单位:环)甲66778999910乙67788889910丙66677810101010针对上述成绩,三位教练是这样评价的:教练:三名队员的水平相当;教练:三名队员每人都有自己的优势;教练:如果从不同的角度分析,教练和说的都有道理.你同意教练的观点吗?通过数据分析,说明你的理由.23.(10分)如图,在△ABC中,∠ABC15°,AB,BC2,以AB为直角边向外作等腰直角△BAD,且∠BAD=90°;以BC为斜边向外作等腰直角△BEC,连接DE.(1)按要求补全图形;(2)求DE长;(3)直接写出△ABC的面积.24.(10分)如图,L1、L2分别表示两个一次函数的图象,它们相交于点P.(1)求出两条直线的函数关系式;(2)点P的坐标可看作是哪个二元一次方程组的解?(3)求出图中△APB的面积.25.(12分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工程所需的时间比是5:3,两队共同施工15天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工15天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?26.解分式方程:(1)(2)

参考答案一、选择题(每题4分,共48分)1、B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【题目详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C选项不符合题意;D.如果,那么的逆命题为如果,那么是假命题,所以D选项不符合题意.故选:B.【题目点拨】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.2、D【分析】连接BD,先根据三角形的内角和等于求出∠OBD+∠ODB,再根据三角形的内角和定理求解即可.【题目详解】解:如图,连接BD.∵在ABD中,,,∴∴在BOD中,故选:D.【题目点拨】本题考查的是三角形内角和定理,熟练掌握三角形的内角和定理,并能利用整体思想计算是解题关键.3、A【分析】根据同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.【题目详解】解:∵(3a2)3=27a6,∴选项A符合题意;∵(a3)2=a6,∴选项B不符合题意;∵a3•a4=a7,∴选项C不符合题意;∵a6÷a3=a3,∴选项D不符合题意.故选:A.【题目点拨】本题考查的知识点是同底数幂的乘除法的运算法则以及幂的乘方,积的乘方的运算法则,熟练掌握以上知识点的运算法则是解此题的关键.4、C【解题分析】试题分析:根据同底幂的乘法,幂的乘方和积运算的乘方法则以及完全平方公式逐一计算作出判断:A.,选项错误;B.,选项错误;C.,选项正确;D.,选项错误.故选C.考点:1.同底幂的乘法;2.幂的乘方和积运算的乘方;3.完全平方公式.5、C【解题分析】分析:首先进行去分母将分式方程转化为整式方程,然后解一元一次方程,最后对方程的根进行检验.详解:去分母可得:x-2=2(x-1),解得:x=0,经检验:x=0是原方程的解,∴分式方程的解为x=0,故选C.点睛:本题主要考查的是解分式方程的方法,属于基础题型.去分母是解分式方程的关键所在,还要注意分式方程最后必须进行验根.6、B【分析】先根据等边对等角求出,再根据外角的性质,利用即可求解.【题目详解】解:又故选:B.【题目点拨】本题考查了等腰三角形的性质以及三角形的外角,正确的分析题意,进行角的计算,即可求出正确答案.7、A【分析】由题意易得△BDP和△PEC为等腰三角形,然后根据等腰三角形的性质可求解.【题目详解】解:∠ABC和∠ACB的平分线交于点P,∠ABP=∠PBC,∠ACP=∠PCB,DE∥BC,∠DPB=∠PBC,∠DPB=∠PBC=∠ABP,BD=DP,同理可证PE=EC,AB=6,AC=4,,故选A.【题目点拨】本题主要考查等腰三角形的性质与判定,关键是熟练掌握“双平等腰”这个模型.8、B【解题分析】根据轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、是轴对称图形,故本选项不符合题意;

B、不是轴对称图形,故本选项符合题意;

C、是轴对称图形,故本选项不符合题意;

D、是轴对称图形,故本选项不符合题意.

故选:B.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、D【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.【题目详解】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BO=CO,∴△ABC,△ABD,△ACE,△BOC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,∴BE=BO,CO=CD,BC=BD=CE,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选:D.【题目点拨】本题考查了等腰三角形的判定,灵活的利用等腰三角形的性质确定角的度数是解题的关键.10、A【分析】分别计算出两个图形中阴影部分的面积即可.【题目详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【题目点拨】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.11、C【分析】先写出各选项的逆命题,然后逐一判断即可得出结论.【题目详解】A.如果x=y,那么x2=y2的逆命题为:如果x2=y2,那么x=y,是假命题,故A选项不符合题意;B.相等的角是内错角的逆命题为:内错角相等,是假命题,故B选项不符合题意;C.有三个角是60°的三角形是等边三角形的逆命题为:等边三角形的三个角都是60°,是真命题,故C选项符合题意;D.全等三角形的对应角相等的逆命题为:对应角相等的两个三角形全等,是假命题,故D选项不符合题意;故选C.【题目点拨】此题考查的是写一个命题的逆命题和判断逆命题的真假,掌握平方的意义、等边三角形的性质和全等三角形的判定是解决此题的关键.12、C【解题分析】根据非负数的性质列出关于x、y的二元一次方程组求解得到x、y的值,再代入代数式进行计算即可得解.【题目详解】根据题意得,,由②得,y=3x③,把③代入①得,x+3x﹣4=0,解得x=1,把x=1代入③得,y=3,所以方程组的解是,所以2x﹣y=2×1﹣3=﹣1.故选C.二、填空题(每题4分,共24分)13、70°【解题分析】试题分析:由折叠的性质可求得∠EFC=∠EFC′=125°,由平行线的性质可求得∠DEF=∠BEF=55°,从而可求得∠AEB的度数.解:由折叠的性质可得∠EFC=∠EFC′=125°,∠DEF=∠BEF,∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠DEF=∠BEF=180°﹣∠EFC=180°﹣125°=55°,∴∠AEB=180°﹣∠DEF﹣∠BEF=180°﹣55°﹣55°=70°,故答案为70°.14、130°【分析】:根据平行线的判定得出这两条直线平行,根据平行线的性质求出∠4=180°-∠3,求出∠4即可.【题目详解】解:由题意可知,∠1的对顶角为50°=∠3∴两直线平行,所以∠3的同位角与∠4是邻补角,∴∠4=180°-∠3=130°故答案为:130°【题目点拨】本题考查平行线的判定和性质,难度不大.15、135【解题分析】如图,由已知条件易证△ABC≌△BED及△BDF是等腰直角三角形,∴∠1=∠EBD,∠2=45°,∵∠3+∠EBD=90°,∴∠1+∠2+∠3=135°.16、3【解题分析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,(每两个1之间依次多一个2)是无理数,其余的都是有理数,即上述各数中,无理数有3个.17、125°【分析】根据题意可知,尺规作图所作的是角平分线,再根据三角形内角和的性质问题可解.【题目详解】解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣70°=110°,由作图可知OB平分∠ABC,CO平分∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°,故答案为125°.【题目点拨】本题考查作图-基本作图,角平分线性质和三角形内角和的性质,解题的关键是熟练掌握基本知识.18、﹣1【分析】等式左边根据多项式的乘法法则计算,合并后对比两边系数即得答案.【题目详解】解:∵,,∴,∴m=﹣1.故答案为:﹣1.【题目点拨】本题考查了多项式乘多项式的运算法则,属于基础题型,熟练掌握多项式乘法的运算法则是解题关键.三、解答题(共78分)19、证明见解析.【解题分析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.20、(1)y=2x﹣1;(2)点B的坐标为(0,4)或(0,﹣6).【分析】(1)利用待定系数法求出直线l的表达式即可;(2)设B(0,m),得出AB的长,由P的横坐标乘以AB长的一半表示出三角形APB面积,由已知面积列方程求出m的值,即可确定出B的坐标.【题目详解】解:(1)设直线l表达式为y=kx+b(k,b为常数且k≠0),把A(0,﹣1),P(2,3)代入得:,解得:,则直线l表达式为y=2x﹣1;(2)设点B的坐标为(0,m),则AB=|1+m|,∵△APB的面积为5,∴AB•xP=5,即|1+m|×2=5,整理得:|1+m|=5,即1+m=5或1+m=﹣5,解得:m=4或m=﹣6,故点B的坐标为(0,4)或(0,﹣6).【题目点拨】本题是一次函数的综合题,涉及了待定系数法求一次函数解析式、三角形的面积等知识,解答本题的关键是数形结合思想及分类讨论思想的运用.21、(1)见解析;(2),见解析【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【题目详解】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)EG⊥DF,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,∴DG=FG,由(1)得:△ADE≌△BFE∴DE=FE,即GE为DF上的中线,又∵DG=FG,∴EG⊥DF.【题目点拨】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.22、同意教练C的观点,见解析【分析】依次求出甲、乙、丙三名队员成绩的平均数、中位数、方差及众数,根据数据的稳定性即可判断.【题目详解】解:依题意渴求得:甲队员成绩的平均数为=8;乙队员成绩的平均数为=8;丙队员成绩的平均数为=8;甲队员成绩的中位数为,乙队员成绩的中位数为,丙队员成绩的中位数为,甲队员成绩的方差为=[(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(9−8)2+(9−8)2+(9−8)2+(9−8)2+(10−8)2]=1.8;乙队员成绩的方差为=[(6−8)2+(7−8)2+(7−8)2+(8−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2+(9−8)2+(10−8)2]=1.2;丙队员成绩的方差为=[(6−8)2+(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(10−8)2+(10−8)2+(10−8)2+(10−8)2]=3;由于甲、乙、丙三名队员成绩的平均数分别为:,,,所以,三名队员的水平相当.故,教练A说的有道理.由于甲、乙、丙三名队员的成绩的中位数分别为:8.5;8;7.5.所以,从中位数方面分析,甲队员有优势.由于甲、乙、丙三名队员的成绩的方差分别为:,,.所以,从方差方面分析,乙队员有优势.由于甲、乙、丙三名队员的成绩的众数分别为:9;8;10.所以,从众数方面分析,丙队员有优势.故,教练B说的有道理.所以,同意教练C的观点.【题目点拨】此题主要考查数据分析的应用,解题的关键是熟知平均数、中位数、方差及众数的求解方法.23、(1)见解析;(2);(3)【分析】(1)根据题意描述绘图即可.(2)连接DC,先证明△BCD是等边三角形,再证明DE垂直平分BC.由勾股定理求出DF和EF的长度,DE=DF+EF.(3)可以证明△ABC≌△DAC,用△DBC的面积减去△ABD的面积除以2即可得到△ABC的面积.【题目详解】解:(1)如图所示(2)连接DC解:∵△ABD是等腰直角三角形,AB=,∠BAD=90°.∴AB=AD=,∠ABD=45°.由勾股定理得DB=2.∴∠DBC=∠ABC+∠ABD=60°.∵BC=2.∴BC=BD.∴△BCD是等边三角形.∴BD=CD=2.∴D点在线段BC的垂直平分线上.又∵△BEC是等腰直角三角形.∴BE=CE,∠CEB=45°∴E点在线段BC的垂直平分线上.∴DE垂直平分BC.∴BF=BC=1,∠BFE=90°∵∠FBE=∠BEF=45°∴BF=EF=1Rt△BFD中,BF=1,BD=2由勾股定理得DF=,∴DE=DF+EF=.(3)∵AD=AB,DC=BC,AC=AC,∴△ABC≌△DAC.用△DBC的面积减去△ABD的面积除以2即可得到△ABC的面积.△DBC的面积为=,△ABD的面积为.所以△ABC的面积为.【题目点拨】本题主要考查的是绘图、勾股定理、平分线的性质、等边三角形的判定、直角三角形性质以及三角形面积公式等知识点,熟练掌握知识点是本题的解题关键.24、(1)L1:y=;L2:y=(2)(3)【分析】(1)利用待定系数法即可求出两条直线的函数关系式;(2)根据两直线的交点坐标与两直线解析式联立的二元一次方程组的关系即可得出结论;(3)先求出点P的坐标,然后根据三角形的面积公式即可求出结论.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论