2024届江西省吉安市永新县数学八上期末综合测试试题含解析_第1页
2024届江西省吉安市永新县数学八上期末综合测试试题含解析_第2页
2024届江西省吉安市永新县数学八上期末综合测试试题含解析_第3页
2024届江西省吉安市永新县数学八上期末综合测试试题含解析_第4页
2024届江西省吉安市永新县数学八上期末综合测试试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省吉安市永新县数学八上期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°2.在平面直角坐标系xOy中,线段AB的两个点坐标分别为A(﹣1,﹣1),B(1,2).平移线段AB,得到线段A′B′.已知点A′的坐标为(3,1),则点B′的坐标为()A.(4,4) B.(5,4) C.(6,4) D.(5,3)3.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为3m和4m..按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2m B.3m C.4m D.6m4.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()A.①② B.①③ C.②③ D.②④5.下列运算正确的是()A.a+a=a2 B.a6÷a3=a2 C.(a+b)2=a2+b2 D.(ab3)2=a2b66.某市城市轨道交通号线工程的中标价格是元,精确到,用科学记数法可表示为()A. B. C. D.7.如图,在中,线段AB的中垂线交AB于点D,交AC于点E,AC=14,的周长是24,则BC的长为()A.10 B.11 C.14 D.158.如图,圆柱的底面周长为24厘米,高AB为5厘米,BC是底面直径,一只蚂蚁从点A出发沿着圆柱体的侧面爬行到点C的最短路程是()A.6厘米 B.12厘米 C.13厘米 D.16厘米9.如图,已知点A(1,-1),B(2,3),点P为x轴上一点,当|PA-PB|的值最大时,点P的坐标为()A.(-1,0) B.(,0) C.(,0) D.(1,0)10.△ABC中,AB=3,AC=2,BC=a,下列数轴中表示的a的取值范围,正确的是()A. B.C. D.11.如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,作CM⊥AD,垂足为M,下列结论不正确的是()A.AD=CE B.MF=CF C.∠BEC=∠CDA D.AM=CM12.若分式等于零,则的值是()A. B. C. D.二、填空题(每题4分,共24分)13.观察下列各式:;;;;⋯⋯⋯,则______14.把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式_____________.15.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.16.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为___.17.比较大小:_______3(填“˃”或“=”或“<”).18.已知有理数,我们把称为的差倒数,如2的差倒数为,-1的差倒数,已知,是的差倒数,是的差倒数,是的差倒数…,依此类推,则______.三、解答题(共78分)19.(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.(1)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长20.(8分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.21.(8分)如图,是等腰直角三角形,,为延长线上一点,点在上,的延长线交于点,.求证:.22.(10分)(1)计算与化简:①②(2)解方程(3)因式分解23.(10分)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:

;(2)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(3)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.24.(10分)为参加学校艺术节闭幕演出,八年级一班欲租用男、女演出服装若干套以供演出时使用,已知4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元.(1)租用男装、女装一天的价格分别是多少?(2)由于演出时间错开租用高峰时段,男装、女装一天的租金分别给予9折和8折优惠,若该班演出团由5名男生和12名女生组成,求在演出当天该班租用服装实际支付的租金是多少?25.(12分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴于,且面积为.(1)求点的坐标及直线的解析式.(2)如图1设点为线段中点,点为轴上一动点,连接,以为边向右侧作以为直角顶点的等腰,在点运动过程中,当点落在直线上时,求点的坐标.(3)如图2,若为线段上一点,且满足,点为直线上一动点,在轴上是否存在点,使以点,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.26.已知中,.(1)如图1,在中,,连接、,若,求证:(2)如图2,在中,,连接、,若,于点,,,求的长;(3)如图3,在中,,连接,若,求的值.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.2、B【分析】由题意可得线段AB平移的方式,然后根据平移的性质解答即可.【题目详解】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,1),∴线段AB先向右平移4个单位,再向上平移2个单位,∴B(1,2)平移后的对应点B′的坐标为(1+4,2+2),即(5,4).故选:B.【题目点拨】本题考查了平移变换的性质,一般来说,坐标系中点的平移遵循:上加下减,左减右加的规律,熟练掌握求解的方法是解题关键.3、B【解题分析】根据△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积即可求解.【题目详解】解:在直角△ABC中,BC=4m,AC=3m.则∵中心O到三条支路的距离相等,设距离是r.

∵△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积∴∴3×4=5r+4r+3r

∴r=1.

故O到三条支路的管道总长是1×3=3m.

故选:B.【题目点拨】此题主要考查了三角形的内心的性质,三角形内心到三角形的各边的距离相等,利用三角形的面积的关系求解是解题的关键.4、A【解题分析】试题分析:将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.5、D【分析】直接利用合并同类项法则、同底数幂的除法运算法则、幂的乘方运算法则和完全平方公式分别进行计算,再进行判断.【题目详解】A、a+a=2a,故此选项错误;B、a6÷a3=a6-3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、(ab3)2=a2b6,故此选项计算正确.故选D.【题目点拨】考查了幂的乘方运算以及同底数幂的除法运算、合并同类项等知识,正确掌握运算法则是解题关键.6、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】把精确到为=.故选:C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、A【分析】根据线段垂直平分线的性质即可得出答案.【题目详解】DE是线段AB的中垂线AE=BEAC=14BE+CE=AE+CE=AC=14的周长是24,即BC+BE+CE=24BC=24-(BE+CE)=10故选A.【题目点拨】本题考查了线段垂直平分线的性质定理,熟练掌握性质定理是解题的关键.8、C【分析】根据题意,可以将圆柱体沿BC切开,然后展开,易得到矩形ABCD,根据两点之间线段最短,再根据勾股定理即可求得答案.【题目详解】解:∵圆柱体的周长为24cm∴展开AD的长为周长的一半:AD=12(cm)∵两点之间线段最短,AC即为所求∴根据勾股定理AC===13(cm)故选C.

【题目点拨】本题主要考查了几何体的展开图以及勾股定理,能够空间想象出展开图是矩形,结合勾股定理准确的运算是解决本题的关键.9、B【分析】由题意作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.【题目详解】解:作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,-1),∴C的坐标为(1,1),连接BC,设直线BC的解析式为:y=kx+b,∴,解得,∴直线BC的解析式为:y=2x-1,当y=0时,x=,∴点P的坐标为:(,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|PA-PB|=|PC-PB|<BC,∴此时|PA-PB|=|PC-PB|=BC取得最大值.故选:B.【题目点拨】本题考查轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.此题难度较大,解题的关键是找到P点,注意数形结合思想与方程思想的应用.10、A【分析】首先根据三角形的三边关系确定a的取值范围,然后在数轴上表示即可.【题目详解】解:∵△ABC中,AB=3,AC=2,BC=a,∴1<a<5,∴A符合,故选:A.【题目点拨】本题主要考查了三角形三边关系的知识点,准确判断出第三边的取值范围,然后在数轴上进行表示,注意在数轴上表示的点为空心即可.11、D【分析】由等边三角形的性质和已知条件证出△AEC≌△BDA,即可得出A正确;由全等三角形的性质得出∠BAD=∠ACE,求出∠CFM=∠AFE=60°,得出∠FCM=30°,即可得出B正确;由等边三角形的性质和三角形的外角性质得出C正确;D不正确.【题目详解】A正确;理由如下:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC又∵AE=BD在△AEC与△BDA中,,∴△AEC≌△BDA(SAS),∴AD=CE;B正确;理由如下:∵△AEC≌△BDA,∴∠BAD=∠ACE,∴∠AFE=∠ACE+∠CAD=∠BAD+∠CAD=∠BAC=60°,∴∠CFM=∠AFE=60°,∵CM⊥AD,∴在Rt△CFM中,∠FCM=30°,∴MF=CF;C正确;理由如下:∵∠BEC=∠BAD+∠AFE,∠AFE=60°,∴∠BEC=∠BAD+∠AFE=∠BAD+60°,∵∠CDA=∠BAD+∠CBA=∠BAD+60°,∴∠BEC=∠CDA;D不正确;理由如下:要使AM=CM,则必须使∠DAC=45°,由已知条件知∠DAC的度数为大于0°小于60°均可,∴AM=CM不成立;故选D.【题目点拨】本题考查了等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质,并能进行推理论证与计算是解决问题的关键.12、C【分析】根据分式的值为零的条件可以求出的值,分式的值是1的条件是:分子为1,分母不为1.【题目详解】∵且,解得:,故选:C.【题目点拨】本题考查了分式的值为零的条件:分式的分子为1,分母不为1,则分式的值为1.二、填空题(每题4分,共24分)13、【分析】根据题意,总结式子的变化规律,然后得到,然后把代数式化简,通过拆项合并的方法进行计算,即可求出答案.【题目详解】解:∵;;;;……∴;∴;故答案为:.【题目点拨】本题考查了整式的混合运算,以及数字的变化规律,解题的关键是熟练掌握正确掌握题意,找到题目的规律,从而运用拆项法进行解题.14、如果两个三角形三条边对应相等,那么这两个三角形全等【分析】命题一般都可以写成如果…那么…形式;如果后面是题设,那么后面是结论.【题目详解】把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式为:如果两个三角形三条边对应相等,那么这两个三角形全等.故答案为:如果两个三角形三条边对应相等,那么这两个三角形全等15、1【分析】延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.【题目详解】延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=110°,∴∠DBC=∠DCB=20°,∵∠A=10°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=110°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=1;故答案为:1.【题目点拨】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.16、9【分析】利用三角形的内角和求出∠A,余角的定义求出∠ACD,然后利用含30度角的直角三角形性质求出AC=2AD,AB=2AC即可..【题目详解】解:∵CD⊥AB,∠ACB=90°,∴∠ADC=∠ACB=90°又∵在三角形ABC中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=AC,即AC=6∴AB=2AC=12∴BD=AB-AD=12-3=9【题目点拨】本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.17、<【分析】利用平方法即可比较.【题目详解】解:∵,,7<9,∴,故答案为:<.【题目点拨】本题主要考查了无理数的大小比较.掌握平方法比较实数大小的方式是解题关键.18、【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2020除以3,根据余数的情况确定出与相同的数即可得解.【题目详解】解:∵,

∴,,,……

∴这个数列以,,2依次循环,且,

∵,

∴,

故答案为:.【题目点拨】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.三、解答题(共78分)19、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【题目详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,

∵△DEC是由△ABC绕点C旋转得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),

即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此时S△DCF1=S△BDE;

过点D作DF1⊥BD,

∵∠ABC=20°,F1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等边三角形,

∴DF1=DF1,过点D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,点D是角平分线上一点,

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴点F1也是所求的点,

∵∠ABC=20°,点D是角平分线上一点,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的长为3或2.20、(1)∠ECF=45°;(2)BC=,和△ABC的面积为.【分析】(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE中,根据勾股定理可得BC=,设AE=x,则AB=x+5,根据勾股定理可得AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,求得x=,即可得出S△ABC=AB×CE=.【题目详解】解:(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=×90°=45°,即∠ECF=45°;(2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF,∴CE=EF=4,∴BE=4+1=5,∴再Rt△BCE中,BC=设AE=x,则AB=x+5,∵在Rt△ACE中,AC2=AE2+CE2,在Rt△ABC中,AC2=AB2﹣BC2,∴AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,解得x=∴S△ABC=AB×CE=(+5)×4=.【题目点拨】本题主要考查折叠的性质及勾股定理的应用,掌握折叠的性质及勾股定理是解题的关键.21、证明见解析【分析】首先证明得,结合,根据三角形内角和定理可求出即可得到结论.【题目详解】证明:是等腰直角三角形,,,,,即,又已知,,,又,,,,,即:【题目点拨】此题主要考查了线段垂直的证明,得出是解题的关键.22、(1)①;②;(2);(3)【分析】(1)①分别进行负整数指数幂、零指数幂等运算,然后合并;②先计算积的乘方,再计算单项式除以单项式即可;(2)方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(3)先提公因式(),再利用平方差公式继续分解即可.【题目详解】(1)①;②;(2)解方程两边同乘以()()去分母得:,去括号、合并得:,解得:,经检验,是原方程的解,∴;(3).【题目点拨】本题考查了实数的运算,幂的混合运算,解分式方程以及因式分解,熟练掌握运算法则是解本题的关键.23、(1)∠A+∠D=∠C+∠B;(2)∠P=45°;(3)2∠P=∠D+∠B.【解题分析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义可得∠DAP=∠PAB,∠DCP=∠PCB,将①+②整理可得2∠P=∠D+∠B,进而求得∠P的度数;(3)同(2)根据“8字形”中的角的规律和角平分线的定义,即可得出2∠P=∠D+∠B.【题目详解】解(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B=50°+40°,∴∠P=45°;

(3)关系:2∠P=∠D+∠B;证明过程同(2).24、(1)40元,55元;(2)708元【分析】(1)设租用男装一天x元,租用女装需要y元,根据4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元列方程组求解即可;(2)根据(1)中所求的结果,按9折和8折优惠求出实际需支付租金即可.【题目详解】(1)设租用男装一天x元,租用女装需要y元,由题意得,,解得:,答:租用男装一天40元,租用女装需要55元;(2)根据题意得:(元).答:演出当天租用服装实际需支付租金为708元.【题目点拨】本题考查了二元一次方程组的应用,关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.25、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论