2024届浙江省义乌市稠州中学八上数学期末统考试题含解析_第1页
2024届浙江省义乌市稠州中学八上数学期末统考试题含解析_第2页
2024届浙江省义乌市稠州中学八上数学期末统考试题含解析_第3页
2024届浙江省义乌市稠州中学八上数学期末统考试题含解析_第4页
2024届浙江省义乌市稠州中学八上数学期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省义乌市稠州中学八上数学期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位 B.它精确到0.01C.它精确到千分位 D.它精确到千位2.ABC的内角分别为A、B、C,下列能判定ABC是直角三角形的条件是()A.A2B3C B.C2B C.A:B:C3:4:5 D.ABC3.化简的结果是()A. B. C. D.4.如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分 D.CD平分∠ACB5.如图,已知正方形B的面积为144,正方形C的面积为169时,那么正方形A的面积为()A.313 B.144 C.169 D.256.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.7.计算的结果是()A. B. C.a-b D.a+b8.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A.1个 B.2个 C.3个 D.4个9.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.BC∥EF C.∠A=∠EDF D.AD=CF10.在直角坐标系中,函数与的图像大数是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,点O为等腰三角形ABC底边BC的中点,,,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为_________.12.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.13.如图,已知平分,且,若,则的度数是__________.14.写出一个能说明命题:“若,则”是假命题的反例:__________.15.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=.16.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为______米.17.若分式方程有增根,则的值为__________.18.一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为_____.三、解答题(共66分)19.(10分)如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.20.(6分)如图,,点在上.(1)求证:平分;(2)求证:.21.(6分)如图,△ABC在直角坐标系中.(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.22.(8分)如图,已知CD∥BF,∠B+∠D=180°,求证:AB∥DE.23.(8分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD.(1)求证:OP=OF;(2)求AP的长.24.(8分)新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10辆汽车全部装满,每辆汽车只能装运同一种水果,且装运每种水果的车辆都不少于2辆,根据下表提供的信息,解答以下问题:苹果芦柑香梨每辆汽车载货量吨765每车水果获利元250030002000设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,求y与x之间的函数关系式,并直接写出x的取值范围用w来表示销售获得的利润,那么怎样安排车辆能使此次销售获利最大?并求出w的最大值.25.(10分)(1)计算:(2)已知,求的值.26.(10分)(1)如图,在中,,于点,平分,你能找出与,之间的数量关系吗?并说明理由.(2)如图,在,,平分,为上一点,于点,这时与,之间又有何数量关系?请你直接写出它们的关系,不需要证明.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据近似数的精确度求解.【题目详解】解:1.36×105精确到千位.故选:D.【题目点拨】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.2、D【解题分析】根据直角三角形的性质即可求解.【题目详解】若ABC又AB+C=180°∴2∠C=180°,得∠C=90°,故为直角三角形,故选D.【题目点拨】此题主要考查直角三角形的判定,解题的关键是熟知三角形的内角和.3、A【分析】先通分,然后根据分式的加法法则计算即可.【题目详解】解:===故选A.【题目点拨】此题考查的是分式的加法运算,掌握分式的加法法则是解决此题的关键.4、A【分析】由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.【题目详解】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB是CD的垂直平分线.即AB垂直平分CD.故选A.【题目点拨】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.5、D【分析】设三个正方形的边长依次为,由于三个正方形的三边组成一个直角三角形,利用勾股定理即可解答.【题目详解】设三个正方形的边长依次为,由于三个正方形的三边组成一个直角三角形,所以,故,即.故选:D6、B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【题目详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【题目点拨】考核知识点:轴对称图形识别.7、B【分析】先算小括号里的,再算乘法,约分化简即可.【题目详解】解:==故选B.【题目点拨】本题考查分式的混合运算.8、C【分析】①由函数图象可以求出妈妈骑车的速度是210米/分;

②设妈妈到家后追上小华的时间为x分钟,就可以求出小华家到学校的距离;

③由②结论就可以求出小华到校的时间;

④由③的结论就可以求出相遇的时间.【题目详解】解:①由题意,得

妈妈骑车的速度为:2100÷10=210米/分;

②设妈妈到家后追上小华的时间为x分钟,由题意,得

210x=10(20+x),

解得:x=1.

∴小华家到学校的距离是:210×1=1210米.

③小华今天早晨上学从家到学校的时间为1210÷10=21分钟,

④由③可知在7点21分时妈妈与小华在学校相遇.

∴正确的有:①②③共3个.

故选:C.【题目点拨】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.9、D【分析】根据“SSS”可添加AD=CF使△ABC≌△DEF.【题目详解】解:A、添加∠BCA=∠F是SSA,不能证明全等,故A选项错误;B、添加.BC∥EF得到的就是A选项中的∠BCA=∠F,故B选项错误;C、添加∠A=∠EDF是SSA,不能证明全等,故C选项错误;D、添加AD=CF可得到AD+DC=CF+DC,即AC=DF,结合题目条件可通过SSS得到△ABC≌△DEF,故D选项正确;故选D.【题目点拨】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边10、B【分析】根据四个选项图像可以判断过原点且k<0,,-k>0即可判断.【题目详解】解:A.与图像增减相反,得到k<0,所以与y轴交点大于0故错误;B.与图像增减相反,得到k<0,所以与y轴交点大于0故正确;C.与图像增减相反,为递增一次函数且不过原点,故错误;D.过原点,而图中两条直线都不过原点,故错误.故选B【题目点拨】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.二、填空题(每小题3分,共24分)11、1.【分析】连接AO,由于△ABC是等腰三角形,点O是BC边的中点,故AO⊥BC,再根据勾股定理求出AO的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AO的长为CP+PO的最小值,由此即可得出结论.【题目详解】连接AO,

∵△ABC是等腰三角形,点O是BC边的中点,

∴AO⊥BC,∴,∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AO的长为CP+PO的最小值,∴△OPC周长的最小值.故答案为:1.【题目点拨】本题考查的是轴对称-最短路线问题以及勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.12、①③④.【分析】根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【题目详解】∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠C=45°,AP⊥BC,AP=BC=PC=BP,∠BAP=∠CAP=45°,∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA),∴AE=CF;EP=PF,即△EPF是等腰直角三角形;故①③正确;S△AEP=S△CFP,∵四边形AEPF的面积=S△AEP+S△APF=S△CFP+S△APF=S△APC=S△ABC,∴四边形AEPF的面积是△ABC面积的一半,故④正确∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;故答案为:①③④.【题目点拨】本题考查了全等三角形的判定和性质,等腰直角三角形的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.13、25°【分析】根据角平分线的定义得出∠CBE=25°,再根据平行线的性质可得∠C的度数.【题目详解】∵平分,且,∴∠CBE=∠ABC=25°,∵∴∠CBE=∠BCD∴∠C=25°.故答案为:25°.【题目点拨】此题主要考查了解平分线的定义以及平行线的性质,求出∠CBE=25°是解题关键.14、(注:答案不唯一)【分析】根据假命题的判断方法,只要找到满足题设条件,而不满足题设结论的a,b值即可.【题目详解】当时,根据有理数的大小比较法则可知:则此时满足,但不满足因此,“若,则”是假命题故答案为:.(注:答案不唯一)【题目点拨】本题考查了假命题的证明方法,掌握反例中题设与结论的特点是解题关键.15、90°.【解题分析】试题解析:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°-∠PBC-∠BCP=30°,∴∠A+∠P=90°.考点:1.三角形内角和定理;2.三角形的角平分线、中线和高;3.三角形的外角性质.16、8.4×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.0000084=8.4×10-6,故答案为:8.4×10-6.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根得到,然后将的值代入整式方程求出的值即可.【题目详解】∵∴∵若分式方程有增根∴∴故答案是:【题目点拨】本题考查了分式方程的增根,掌握增根的定义是解题的关键.18、【分析】根据”上加下减”的平移规律解答即可.【题目详解】解:一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为:.故答案:【题目点拨】本题考查了一次函数图像与几何变换,求直线平移后的解析式要注意平移时候k值不变,解析式变化的规律是:上加下减,左加右减.三、解答题(共66分)19、见解析【分析】先根据直角三角形全等的判定方法证得Rt△ABC≌Rt△DEF(HL),则BC=EF,即CE=BF.【题目详解】证明:∵AB⊥CD,DE⊥CF,∴∠ABC=∠DEF=90°.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).∴BC=EF.∴BC﹣BE=EF﹣BE.即:CE=BF.【题目点拨】本题考查三角形全等的判定,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL(直角三角形).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20、(1)见解析;(2)见解析.【分析】(1)由题中条件易知:△ABC≌△ADC,可得AC平分∠BAD;

(2)利用(1)的结论,可得△BAE≌△DAE,得出BE=DE.【题目详解】解:(1)在与中,∴∴即平分;(2)由(1)在与中,得∴∴【题目点拨】熟练运用三角形全等的判定,得出三角形全等,转化边角关系是解题关键.21、(1)A1(-3,0),B1(2,3),C1(-1,4),图略(2)S△ABC=1【分析】(1)根据平移的性质,结合已知点A,B,C的坐标,即可写出A1、B1、C1的坐标,(2)根据点的坐标的表示法即可写出各个顶点的坐标,根据S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF,即可求得三角形的面积.【题目详解】(1)如图所示.根据题意得:A1、B1、C1的坐标分别是:A1(﹣3,0),B1(2,3),C1(﹣1,4);(2)S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF=4×53×53×12×4=204=1.【题目点拨】本题考查了点的坐标的表示,以及图形的面积的计算,不规则图形的面积等于规则图形的面积的和或差.22、见解析【分析】利用平行线的性质定理可得∠BOD=∠B,等量代换可得∠BOD+∠D=180°,利用同旁内角互补,两直线平行可得结论.【题目详解】证明:∵CD∥BF,

∴∠BOD=∠B,

∵∠B+∠D=180°,

∴∠BOD+∠D=180°,

∴AB∥DE.【题目点拨】考查了平行线的性质定理和判定定理,综合运用定理是解答此题的关键.23、(1)证明见解析;(2)4.1.【分析】(1)由折叠的性质得出∠E=∠A=90°,从而得到∠D=∠E=90°,然后可证明△ODP≌△OEF,从而得到OP=OF;(2)由△ODP≌△OEF,得出OP=OF,PD=FE,从而得到DF=PE,设AP=EP=DF=x,则PD=EF=6-x,DF=x,求出CF、BF,根据勾股定理得出方程,解方程即可.【题目详解】(1)∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1.由翻折的性质可知:EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEF中,,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论