




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两条直线平行与垂直的判定郴州一中:刘柄楠整理ppt新课讲解1、斜率存在时两直线平行的条件整理ppt结论1:如果两条不重合直线L1,L2的斜率为k1,k2.那么
L1∥L2
k1=k2注意:上面的等价是在两不重合直线斜率存在的前提下才成立的,缺少这个前提,结论并不存立.特殊情况下的两直线平行:两直线的倾斜角都为90°,互相平行.斜率存在时k1=k2
L1∥L2或L1与L2重合整理ppt例题讲解1、已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断直线BA与PQ的位置关系,并证明你的结论。2、已知四边形ABCD的四个顶点分别为A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明。整理ppt2、斜率存在时两直线垂直的条件新课讲解整理ppt结论2:
如果两直线的斜率为k1,
k2,那么,这两条直线垂直的充要条件是k1·k2=-1注意:上面的等价是在两直线斜率存在的前提下才成立的,缺少这个前提,结论并不存立.特殊情况下的两直线垂直.当两条直线中有一条直线没有斜率时:当另一条直线的斜率为0时,则一条直线的倾斜角为900,另一条直线的倾斜角为0°两直线互相垂直整理ppt例3:已知A(-6,0),B(3,6),P(0,3),Q(6,-6),试判断直线AB与PQ的位置关系.例4:已知A(5,-1),B(1,1),C(2,3)三点,试判断△ABC的形状.例题讲解整理ppt例5:已知正方形ABCD中,E,F分别是边AD,AB的中点,利用解析法证明:BE⊥CF.整理ppt例6:已知A(0,3),B(-1,0),C(3,0),求D点的坐标,使四边形ABCD为直角梯形(A、B、C、D按逆时针方向排列)。...ACBOxyDD整理ppt小结与练习练习:P891、2作业:习题A:6、7整理ppt例题例4已知直线与互相垂直,求
的值02)32()1(=+++-yaxa03)1()2(=--++yaxa整理ppt例5:求过点A(2,1)且与直线2x+y-10=0垂直的直线的方程例题注意:
①解法一求直线方程的方法是通法,必须掌握;②解法二是常常采用的解题技巧:一般地,由于与直线Ax+By+C=0垂直的直线的斜率互为负倒数,故可得其方程为Bx-Ay+
=0,其中
待定(直线系)整理ppt2如果直线L1,L2的方程为L1:A1x+B1y+C1=0,L2:A2x+B2y+C2=0(A1B1C1≠0,A2B2C2≠0)那么L1⊥L2的充要条件是A1A2+B1B2=11如果直线L1,L2的方程为L1:A1x+B1y+C1=0,L2:A2x+B2y+C2=0(A1B1C1≠0,A2B2C2≠0)那么L1∥L2的充要条件是212121CCBBAA¹=课后思考整理ppt如果直线L1,L2的斜截式方程为L1:y=k1x+b1,L2:y=k2x+b2,
那么L1∥L2
k1=k2且b1≠b2整理ppt例1:两条直线L1:2x-4y+7=0,L2:x-2y+5=0求证:L1∥L2例题例2:求过点A(1,-4)且与直线2x+3y+5=0平行的直线的方程。注意:①解法一求直线方程的方法是通法,必须掌握;②解法二是常常采用的解题技巧。整理ppt例5,过点P(2,-1)作直线L与线段AB有公共点,A(-3,4),B(3,2)(1)求直线l的斜率k的范围(2)求直线l倾斜角的范围整理ppt课堂练习1若直线和平行,则=
。a12=-ayx122=-ayx02若直线和平行,则=
。a1+=+ayax22+=+aayx1046=+-Cyx012=--yAx直线和直线平行
的条件是
。整理ppt例3:求与直线2x+3y+5=0平行,且在两坐标轴上的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 正规保证借款合同协议
- 快递站打包服务合同协议
- 商场物业承租协议书模板
- 商品交易合同取消协议
- 江苏省扬州市梅岭市级名校2025届第二学期普通高中半期考试初三物理试题含解析
- 商务升级服务合同协议
- 售电公司服务合同协议
- 吕梁务工合同协议
- 商捕租赁合同协议
- 毛纺设备出租合同协议
- 隧道高空作业施工方案
- 危险性较大的分部分项工程专项施工方案严重缺陷清单(试行)
- 深信服超融合HCI技术白皮书-20230213
- 2025年陕西省土地工程建设集团有限责任公司招聘笔试参考题库附带答案详解
- 2024广西公务员【申论A卷、C卷+2023申论A卷】共3套真题及答案
- 《多样的中国民间美术》课件 2024-2025学年人美版(2024)初中美术七年级下册
- 人教版 七年级 下册 语文 第四单元《青春之光》课件
- 2024物业管理数字化升级服务合同
- 灌浆作业安全操作规程(3篇)
- 药品追回管理制度内容
- 二战时期的中国抗日战争
评论
0/150
提交评论