版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省红河市2024届八年级数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知中,,求证:,运用反证法证明这个结论,第一步应先假设()成立A. B. C. D.2.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x,乙持钱为y,则可列方程组A. B. C. D.3.已知是三角形的三边长,如果满足,则三角形的形状是()A.等腰三角形 B.等边三角形 C.直角三角形 D.钝角三角形4.已知有意义,则的取值范围是()A. B. C. D.且5.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A.40° B.80° C.90° D.140°6.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。从袋中摸出4个球,下列属于必然事件的是()A.摸出的4个球其中一个是绿球 B.摸出的4个球其中一个是红球C.摸出的4个球有一个绿球和一个红球 D.摸出的4个球中没有红球7.计算的结果是()A. B.2 C. D.48.下列说法不正确的是(
)A.调查一架“歼20”隐形战机各零部件的质量,应采用抽样调查B.一组数据2,2,3,3,3,4的众数是3C.如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是7D.一组数据1,2,3,4,5的方差是2,那么数据11,12,13,14,15的方差也是29.如图,,点是内的一定点,点分别在上移动,当的周长最小时,的值为()A. B. C. D.10.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()A. B.C. D.11.若分式有意义,则取值范围是()A. B. C. D.12.已知,则()A. B. C. D.二、填空题(每题4分,共24分)13.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.14.一次函数的图象经过点A(-2,-1),且与直线y=2x-1平行,则此函数解析式为_______.15.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是.16.如图,长方形纸片ABCD中,AB=6,BC=8,折叠纸片使AB边与对角线AC重合,点B与点F重合,折痕为AE,则EF的长是_________.17.若A,则A=(___________)18.请将命题"等腰三角形的底角相等"改写为"如果……,那么……"的形式:____________________________________.三、解答题(共78分)19.(8分)我国边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防部迅速派出快艇追赶(如图1).图2中分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.根据图象问答问题:(1)①直线与直线中表示到海岸的距离与追赶时间之间的关系;②与比较速度快;③如果一直追下去,那么________(填“能”或“不能")追上;④可疑船只速度是海里/分,快艇的速度是海里/分;(2)与对应的两个一次函数表达式与中的实际意义各是什么?并直接写出两个具体表达式.(3)分钟内能否追上?为什么?(4)当逃离海岸海里的公海时,将无法对其进行检查,照此速度,能否在逃入公海前将其拦截?为什么?20.(8分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…(1)第④个等式为;(2)根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.21.(8分)[建立模型](1)如图1.等腰中,,,直线经过点,过点作于点,过点作于点,求证:;[模型应用](2)如图2.已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转45'°至直线,求直线的函数表达式:(3)如图3,平面直角坐标系内有一点,过点作轴于点,BC⊥y轴于点,点是线段上的动点,点是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点的坐标,若不能,请说明理由.22.(10分)某小区有两段长度相等的道路需硬化,现分别由甲、乙两个工程队同时开始施工.如图的线段和折线是两队前6天硬化的道路长y甲、y乙(米)与施工时间x(天)之间的函数图象根据图象解答下列问题:(1)直接写出y甲、y乙(米)与x(天)之间的函数关系式.①当0<x≤6时,y甲=;②当0<x≤2时,y乙=;当2<x≤6时,y乙=;(2)求图中点M的坐标,并说明M的横、纵坐标表示的实际意义;(3)施工过程中,甲队的施工速度始终不变,而乙队在施工6天后,每天的施工速度提高到120米/天,预计两队将同时完成任务.两队还需要多少天完成任务?23.(10分)如图,在中,,是高线,,,(1)用直尺与圆规作三角形内角的平分线(不写作法,保留作图痕迹).(2)在(1)的前提下,判断①,②中哪一个正确?并说明理由.24.(10分)观察下列算式:由上可以类似地推出:用含字母的等式表示(1)中的一-般规律(为非零自然数);用以上方法解方程:25.(12分)如图,在四边形中,,连接,,,且平分,.(1)求的度数;(2)求的长.26.计算:14+(3.14)0+÷
参考答案一、选择题(每题4分,共48分)1、A【分析】根据反证法的步骤,第一步要从结论的反面出发假设结论,即可判断.【题目详解】解:的反面为故选A.【题目点拨】此题考查的是反证法的步骤,掌握反证法的第一步为假设结论不成立,并找到结论的反面是解决此题的关键.2、B【分析】由乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,列出方程组求解即可.【题目详解】解:由题意得:,故选B.【题目点拨】本题考查了二元一次方程组的应用,解答本题的关键是理解题意列出方程组.3、C【分析】根据非负数的性质可知a,b,c的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【题目详解】解:∵∴,,,∴,,又∵,故该三角形为直角三角形,故答案为:C.【题目点拨】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a,b,c的值,并正确运用勾股定理的逆定理.4、D【分析】根据分式成立的条件和零指数幂成立的条件列不等式求解【题目详解】解:由题意可知:且解得:且故选:D.【题目点拨】本题考查分式和零指数幂成立的条件,掌握分母不能为零,零指数幂的底数不能为零是解题关键.5、B【解题分析】由题意得:∠C=∠D,∵∠1=∠C+∠3,∠3=∠2+∠D,∴∠1=∠2+∠C+∠D=∠2+2∠C,∴∠1-∠2=2∠C=80°.故选B.点睛:本题主要运用三角形外角的性质结合轴对称的性质找出角与角之间的关系.6、B【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件.【题目详解】A.若摸出的4个球全部是红球,则其中一个一定不是绿球,故本选项属于随机事件;B.摸出的4个球其中一个是红球,故本选项属于必然事件;C.若摸出的4个球全部是红球,则不可能摸出一个绿球,故本选项属于随机事件;D.摸出的4个球中不可能没有红球,至少一个红球,故本选项属于不可能事件;故选B.【题目点拨】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7、B【分析】根据算术平方根的概念,求4的算术平方根即可.【题目详解】解:=2故选:B.【题目点拨】本题考查算术平方根,掌握概念正确理解题意是解题关键.8、A【分析】根据抽样调查和全面调查的区别、众数、平均数和方差的概念解答即可.【题目详解】A、调查一架隐形战机的各零部件的质量,要求精确度高的调查,适合普查,错误;B、一组数据2,2,3,3,3,4的众数是3,正确;C、如果x1与x2的平均数是4,那么x1+1与x2+5的平均数(x1+1+x2+5)÷2=(4+1+4+5)÷2=7,正确;D、一组数据1,2,3,4,5的方差是2,那么把每个数据都加同一个数后得到的新数据11,12,13,14,15的方差也是2,正确;故选A【题目点拨】本题考查了抽样调查和全面调查的区别、众数、平均数和方差的意义,熟练掌握各知识点是解答本题的关键.选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、D【分析】过P点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【题目详解】解:过P点作OB的对称点,过P作OA的对称点,连接,交点为M,N,则此时PMN的周长最小,且△和△为等腰三角形.此时∠=180°-α;设∠NPM=x°,则180°-x°=2(∠-x°)所以x°=180°-2α【题目点拨】求出M,N在什么位子△PMN周长最小是解此题的关键.10、B【解题分析】关键描述语为:“提前了1天完成任务”;等量关系为:原计划用时-实际用时=1.【题目详解】原计划用时为天,而实际用时=天.那么方程应该表示为.故选B.【题目点拨】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.11、B【分析】根据分式有意义的条件:分母≠0,列出不等式即可求出的取值范围.【题目详解】解:∵分式有意义,∴解得:故选B.【题目点拨】此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.12、C【分析】根据同底数幂的乘法、幂的乘方,即可解答.【题目详解】解:,故选:C.【题目点拨】本题考查了同底数幂的乘法、幂的乘方,解决本题的关键是熟记同底数幂的乘法、幂的乘方.二、填空题(每题4分,共24分)13、17【解题分析】试题解析:根据勾股定理可知,∵S正方形1+S正方形1=S大正方形=2,S正方形C+S正方形D=S正方形1,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=2.∴正方形D的面积=2-8-10-14=17(cm1).14、【分析】设所求的一次函数解析式为y=kx+b,根据两直线平行的问题得到k=2,然后把A点坐标代入y=2x+b求出b的值即可.【题目详解】解:设所求的一次函数解析式为y=kx+b,
∵直线y=kx+b与直线y=2x-1平行,
∴k=2,
把A(-2,-1)代入y=2x+b得-4+b=-1,解得b=1,
∴所求的一次函数解析式为y=2x+1.
故答案为:y=2x+1.【题目点拨】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15、90°【解题分析】试题分析:已知三角形三个内角的度数之比,可以设一份为k,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的最大角的度数.解:设三个内角的度数分别为k,2k,3k.则k+2k+3k=180°,解得k=30°,则2k=60°,3k=90°,这个三角形最大的角等于90°.故答案为90°.考点:三角形内角和定理.16、1【分析】求出AC的长度;证明EF=EB(设为x),利用等面积法求出x即可解决问题.【题目详解】解:∵四边形ABCD为矩形,
∴∠B=90°,
由勾股定理得:AC2=AB2+BC2,
∴AC=10;
由题意得:
∠AFE=∠B=90°,
AF=AB=6,EF=EB(设为x),∴,即,解得.故答案为:1.【题目点拨】本题考查折叠的性质,矩形的性质.掌握等面积法是解题关键.17、2【分析】由A,得A=,计算可得.【题目详解】由A,得A==2.故答案为2【题目点拨】本题考核知识点:分式的加法.解题关键点:掌握分式的加法法则.18、如果一个三角形是等腰三角形,那么它的两个底角相等【分析】命题中的条件是一个三角形是等腰三角形,放在“如果”的后面,结论是它的两个底角相等,应放在“那么”的后面.【题目详解】题设为:一个三角形是等腰三角形,结论为:这个三角形的两个底角相等,故写成“如果…那么…”的形式是:如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.故答案为如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.【题目点拨】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.三、解答题(共78分)19、(1)①;②;③能;④0.2,0.5.(2)两直线函数表达式中的表示的是两船的速度.A船:,B船:.(3)15分钟内不能追上.(4)能在逃入公海前将其拦截.【分析】(1)①根据图象的意义,是从海岸出发,表示到海岸的距离与追赶时间之间的关系;②观察两直线的斜率,B船速度更快;③B船可以追上A船;④根据图象求出两直线斜率,即为两船的速度.(2)两直线函数表达式中的表示的是两船的速度.(3)求出两直线的函数表达式,令时间,代入两表达式,若,则表示能追上,否则表示不能追上.(4)联立两函数表达式,解出B船追上A船时的时间与位置,与12海里比较,若该位置小于12海里,则表示能在逃入公海前将其拦截.【题目详解】解:(1)①直线与直线中,表示到海岸的距离与追赶时间之间的关系;②与比较,速度快;③B船速度更快,可以追上A船;④B船速度海里/分;A船速度海里/分.(2)由图象可得,将点代入,可得,解得,表示B船的速度为每分钟0.5海里,所以:.将点,代入,可得,解得,所以:,表示A船速度为每分钟0.2海里.(3)当时,,,,所以15分钟内不能追上.(4)联立两表达式,,解得,此时,所以能在逃入公海前将其拦截.【题目点拨】本题结合追及问题考查了一次函数的图象与性质,一次函数的应用等,熟练掌握函数的图象与性质,理解图象所代表的的实际意义是解答关键.20、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解题分析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【题目详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【题目点拨】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.21、(1)见解析;(2)直线l2的函数表达式为:y=−5x−10;(3)点D的坐标为(,)或(4,−7)或(,).【解题分析】(1)由垂直的定义得∠ADC=∠CEB=90°,由同角的余角的相等得∠DAC=∠ECB,然后利用角角边证明△BEC≌△CDA即可;(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,由(1)可得△ABO≌△BCD(AAS),求出点C的坐标为(−3,5),然后利用待定系数法求直线l2的解析式即可;(3)分情况讨论:①若点P为直角时,②若点C为直角时,③若点D为直角时,分别建立(1)中全等三角形模型,表示出点D坐标,然后根据点D在直线y=−2x+1上进行求解.【题目详解】解:(1)∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△BEC≌△CDA(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:解得:,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=,∴点D的坐标为(,);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=,∴点D的坐标为(,),又∵点D在直线y=−2x+1上,∴,解得:k=,∴点D的坐标为(,);综合所述,点D的坐标为(,)或(4,−7)或(,).【题目点拨】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.22、(1)①100x;②150x;50x+200;(2)在4天时,甲乙两工程队硬化道路的长度相等,均为400m;(3)5天.【解题分析】试题分析:(1)利用待定系数法分别求出三个函数解析式;(2)首先根据一次函数列出二元一次方程组,从而求出点M的坐标,得出实际意义;(3)首先设两队还需要x天完成任务,然后根据速度差×天数=现在的距离差列出一元一次方程,从而求出x的值.试题解析:(1)100x;150x;50x+200;(2)根据题意可得:解得:∴M(4,400)∴M的实际意义:在4天时,甲乙两工程队硬化道路的长度相等,均为400m.(3)设两队还需要x天完成任务,由题意可知:(120-100)x=600-500解得:x=5答:两队还需要5天完成任务.考点:(1)一次函数的实际应用;(2)一元一次方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年共享汽车使用协议5篇
- 2024年短期租赁带司机汽车合同2篇
- 解除合同协议书格式
- 认错保证书怎么写才诚恳
- 设备检修保养合同
- 设计勘察分包合同格式
- 诚信经营物流担保
- 语文大专历史知识卷
- 语文课争议的背后大学教育的问题
- 课堂纪律的保证书
- GB/T 23287-2023殡葬术语
- 经济学原理习题库及答案
- 韩国歌曲音译歌词
- JAVA编码(代码)规范(WORD版)
- 影视拍摄制作报价单模版 (一)
- 国有资产管理法律制度
- 中国古代神话故事的内容与特点
- 2023年中老年保健食品洞察报告-魔镜市场情报-202308
- 海底两万里的物理知识
- 【基于近五年数据的鸿星尔克财务报表分析15000字】
- 【高中数学】大单元统计(总体百分位数的估计)说课课件 高一下学期数学人教A版(2019)必修第二册
评论
0/150
提交评论