河北省邯郸市丛台区育华中学2024届数学八上期末考试模拟试题含解析_第1页
河北省邯郸市丛台区育华中学2024届数学八上期末考试模拟试题含解析_第2页
河北省邯郸市丛台区育华中学2024届数学八上期末考试模拟试题含解析_第3页
河北省邯郸市丛台区育华中学2024届数学八上期末考试模拟试题含解析_第4页
河北省邯郸市丛台区育华中学2024届数学八上期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邯郸市丛台区育华中学2024届数学八上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列计算,正确的是()A. B.a3÷a=a3 C.a2+a2=a4 D.(a2)2=a42.关于的一元二次方程的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定3.如图点按的顺序在边长为1的正方形边上运动,是边上的中点.设点经过的路程为自变量,的面积为,则函数的大致图象是().A. B. C. D.4.如图,一个梯形分成-一个正方形(阴影部分)和一个三角形(空白部分),已知三角形的两条边分别是和,那么阴影部分的面积是()A. B. C. D.5.如图,已知,,则的度数是()A. B. C. D.6.下列各数中,是无理数的是()A.3.14 B. C.0.57 D.7.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段、分别表示小敏、小聪离B地的距离与已用时间之间的关系,则小敏、小聪行走的速度分别是A.和 B.和C.和 D.和8.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,BC=,则CD为()A. B.2 C. D.39.如图,圆柱的底面半径为3cm,圆柱高AB为2cm,BC是底面直径,一只蚂蚁从点A出发沿圆柱表面爬行到点C,则蚂蚁爬行的最短路线长()A.5cm B.8cm C.cm D.cm10.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等 B.相等的角是对顶角C.所有的直角都是相等的 D.若a=b,则a﹣3=b﹣311.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS.下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有()A.1个B.2个C.3个D.4个12.下列二次根式是最简二次根式的()A. B. C. D.二、填空题(每题4分,共24分)13.某销售人员一周的销售业绩如下表所示,这组数据的中位数是__________.14.若方程是一元一次方程,则a的值为__________.15.分解因式:_______16.已知,则_______________.17.若,,则=_________.18.如图,已知中,,AD平分,如果CD=1,且的周长比的周长大2,那么BD=____.三、解答题(共78分)19.(8分)如图,在中,,,点为的中点,点为边上一点且,延长交的延长线于点,若,求的长.20.(8分)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.21.(8分)如图,已知直线y=kx+6经过点A(4,2),直线与x轴,y轴分别交于B、C两点.(1)求点B的坐标;(2)求△OAC的面积.22.(10分)“绿水青山就是金山银山”,随着生活水平的提高人们对饮水品质的需求越来越高,岳阳市槐荫公司根据市场需求代理,两种型号的净水器,每台型净水器比每台型净水器进价多元,用万元购进型净水器与用万元购进型净水器的数量相等(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进,两种型号的共台进行试销,,购买资金不超过万元.试求最多可以购买型净水器多少台?23.(10分)如图1,已知中内部的射线与的外角的平分线相交于点.若.(1)求证:平分;(2)如图2,点是射线上一点,垂直平分于点,于点,连接,若,求.24.(10分)解下列方程组:(1)(2)25.(12分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.26.(阅读理解)利用完全平方公式,可以将多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:(问题解决)根据以上材料,解答下列问题:(1)用多项式的配方法将多项式化成的形式;(2)用多项式的配方法及平方差公式对多项式进行分解因式;(3)求证:不论,取任何实数,多项式的值总为正数.

参考答案一、选择题(每题4分,共48分)1、D【分析】运用同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方进行运算即可判断.【题目详解】A、错误,该选项不符合题意;B、错误,该选项不符合题意;C、错误,该选项不符合题意;D、正确,该选项符合题意;故选:D.【题目点拨】本题考查了同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方的运算法则,掌握相关运算法则是解答本题的关键.2、A【分析】利用根的判别式确定一元二次方程根的情况.【题目详解】解:∴一元二次方程有两个不相等的实数根.故选:A.【题目点拨】本题考查一元二次方程的根的判别式,解题的关键是掌握利用根的判别式确定方程根的情况的方法.3、C【分析】分类讨论,分别表示出点P位于线段AB上、点P位于线段BC上、点P位于线段MC上时对应的的面积,判断函数图像,选出正确答案即可.【题目详解】由点M是CD中点可得:CM=,(1)如图:当点P位于线段AB上时,即0≤x≤1时,y==x;(2)如图:当点P位于线段BC上时,即1<x≤2时,BP=x-1,CP=2-x,y===;(3)如图:当点P位于线段MC上时,即2<x≤时,MP=,y===.综上所述:.根据一次函数的解析式判断一次函数的图像,只有C选项与解析式相符.故选:C.【题目点拨】本题主要考查一次函数的实际应用,分类讨论,将分别表示为一次函数的形式是解题关键.4、B【分析】根据勾股定理解答即可.【题目详解】解:根据勾股定理得出:∴阴影部分面积是25,

故选:B.【题目点拨】此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2解答.5、A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角的和解答即可.【题目详解】∵,,∴=130°-20°=110°.故选A.【题目点拨】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角的和.6、D【解题分析】根据无理数的定义,分别判断,即可得到答案.【题目详解】解:是无理数;3.14,,0.57是有理数;故选:D.【题目点拨】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7、D【解题分析】设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h;设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h,故选D.8、B【解题分析】根据勾股定理就可求得AB的长,再根据△ABC的面积=•AC•BC=•AB•CD,即可求得.【题目详解】根据题意得:AB=.∵△ABC的面积=•AC•BC=•AB•CD,∴CD=.故选B.【题目点拨】本题主要考查了勾股定理,根据三角形的面积是解决本题的关键.9、B【解题分析】将圆柱体的侧面展开并连接AC.∵圆柱的底面半径为3cm,∴BC=×2•π•3=3π(cm),在Rt△ACB中,AC2=AB2+CB2=4+9π2,∴AC=cm.∴蚂蚁爬行的最短的路线长是cm.∵AB+BC=8<,∴蚁爬行的最短路线A⇒B⇒C,故选B.【题目点拨】运用了平面展开图,最短路径问题,做此类题目先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.10、C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【题目详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;

交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;

交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;

交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,

故选C.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11、D【解题分析】∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.12、D【解题分析】根据最简二次根式的概念判断即可.【题目详解】A.不是最简二次根式;B.不是最简二次根式;C.不是最简二次根式;D.是最简二次根式;故选:D.【题目点拨】本题考查的是最简二次根式的概念,(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式.二、填空题(每题4分,共24分)13、1【分析】将数据从小到大排列,然后根据中位数的定义求解.【题目详解】解:将数据从小到大排列为:40,70,70,1,100,150,200,∴这组数据的中位数是1,故答案为:1.【题目点拨】本题考查中位数的求法:给定n个数据,按从小到大(或从大到小)排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,一定存在中位数,但中位数不一定是这组数据里的数.14、1【分析】根据一元一次方程的最高次数是1,求出a的值.【题目详解】解:,.故答案是:1.【题目点拨】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.15、【解题分析】=2()=.故答案为.16、【分析】依据比例的性质,即可得到a=b,再代入分式化简计算即可.【题目详解】解:∵,

∴a=5a-5b,

∴a=b,

∴,

故答案为:.【题目点拨】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.17、21【分析】根据同底数幂相乘逆用运算法则,即可得到答案.【题目详解】解:,故答案为:21.【题目点拨】本题考查了同底数幂相乘,解题的关键是熟练掌握运算法则进行计算.18、【分析】过点D作DM⊥AB于点M,根据角平分线的性质可得CD=MD,进而可用HL证明Rt△ACD≌△AMD,可得AC=AM,由的周长比的周长大2可变形得到BM+BD=3,再设BD=x,则BM=3-x,然后在Rt△BDM中根据勾股定理可得关于x的方程,解方程即可求出x,从而可得答案.【题目详解】解:过点D作DM⊥AB于点M,则,∵AD平分,∴CD=MD,又∵AD=AD,∴Rt△ACD≌△AMD(HL),∴AC=AM,∵的周长比的周长大2,∴(AB+AD+BD)-(AC+AD+CD)=2,∴AB+BD-AC-1=2,∴AM+BM+BD-AC=3,∴BM+BD=3,设BD=x,则BM=3-x,在Rt△BDM中,由勾股定理,得,即,解得:,∴BD=.故答案为:.【题目点拨】本题考查了角平分线的性质、全等三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.三、解答题(共78分)19、1.【分析】先根据含的直角三角形求BC,再利用勾股定理求出AC,进而求出PC,最后利用勾股定理、含的直角三角形和方程思想求出PE.【题目详解】解:∵∴∵,∴∴在中,∵点为的中点∴∵,∴∵与互为对顶角∴=∴在中,∵在中,∴∴∴.【题目点拨】本题考查勾股定理和含的直角三角形,找清楚已知条件中的边长与要求边长的联系是解题关键.特殊角是转化边的有效工具,应该熟练掌握.20、(1)见解析;(2)见解析【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【题目详解】解:(1)连结AD,∵AB=AC,∠BAC=90°,D为BC中点,∴AD⊥BC,BD=AD,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF,∴△BDE≌△ADF(SAS),∴ED=FD,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC,∠BAC=90°,D为BC中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴FD=ED,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【题目点拨】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.21、(1)B(6,0);(2)1【分析】(1)根据待定系数法求得直线解析式,然后根据图象上点的坐标特征即可求得B的坐标;(2)令x=0,求得C的坐标,然后根据三角形面积公式即可求得.【题目详解】解:(1)∵直线y=kx+6经过点A(4,2),∴2=4k+6,解得k=﹣1∴直线为y=﹣x+6令y=0,则﹣x+6=0,解得x=6,∴B(6,0);(2)令x=0,则y=6,∴C(0,6),∴CO=6,∴△OAC的面积=×4=1.【题目点拨】本题考查的知识点是一次函数的图象上点的坐标特征,属于基础题目,易于掌握.22、(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【分析】(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,根据数量=总价单价,结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于的分式方程,解方程检验即可.(2)设购买A型净水器台,则购买B型净水器为(50-)台,根据购买资金=A型净水器的进价购买数量+B型净水器的进价购买数量不超过9.8万元即可得出关于的一元一次不等式,解之即可得出的取值范围,也就得出最多可购买A型净水器的台数.【题目详解】解:(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,由题意,得解得=2000经检验,=2000是分式方程得解∴-200=1800答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)设购买A型净水器台,则购买B型净水器为(50-)台,由题意,得2000+1800(50-)≤98000解得≤40答:最多可以购买A型净水器40台.故答案为(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【题目点拨】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系列出一元一次不等式方程.23、(1)详见解析;(2)1.【分析】(1)根据角平分线的定义和三角形的外角性质进行计算和代换即可.(2)连接,过作垂足为,根据AF是角平分线可得,FG垂直平分BC可得,从而可得,再由,可得,从而可得,即可得.【题目详解】(1)证明:设,平分,,,,,,,又,∴,即平分.(2)解:连接,过作垂足为,由(1)可知平分,又∵,,垂直平分于点,在与中,,,∴,与中,,,∴,即,,.【题目点拨】本题考查了全等三角形综合,涉及了三角形角平分线性质、线段垂直平分线性质,(1)解答的关键是沟通三角形外角和内角的关系;(2)关键是作辅助线构造全等三角形转化线段和差关系.24、(1);(2)【分析】(1)利用加减消元法,消去x,求出y的值,然后代入计算,即可得到方程组的解;(2)先把方程组进行整理,然后利用加减消元法进行求解,即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论