可化为一元一次方程的分式方程“衡水赛”一等奖_第1页
可化为一元一次方程的分式方程“衡水赛”一等奖_第2页
可化为一元一次方程的分式方程“衡水赛”一等奖_第3页
可化为一元一次方程的分式方程“衡水赛”一等奖_第4页
可化为一元一次方程的分式方程“衡水赛”一等奖_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

可化为一元一次方程的分式方程

王仙中学

罗小刚

学习目标:1、知道分式方程的概念;2、会解可化为一元一次方程的分式方程。想一想

某校八年级学生乘车前往某景点秋游,现有两条线路可供选择:线路一全程25km,线路二全程30km;若走线路二平均车速是走线路一的1.5倍,所花时间比走线路一少用10min,则走线路一、二的平均车速分别为多少?

像这样,分母中含有未知数的方程叫作分式方程.

解分式方程的关键是把含未知数的分母去掉,这可以通过在方程的两边同乘各个分式的最简公分母而达到.

阅读与思考请同学们阅读书上第33例1阅读第32页“议一议”,思考下列问题:

1、方程两边同乘的作用是什么?如果同乘能将分式方程转化为整式方程吗?2、解分式方程的关键是什么?这个可以通过怎样达到?3、如何进行检验?例1解方程

举例解

方程两边同乘最简公分母x(x-2),得

5x-3(x-2)=0.解得

x=-3.检验:把x=-3代入原方程,得因此x=-3是原方程的解.左边

==右边分式方程的解也叫作分式方程的根.例2解方程

:举例解

方程两边同乘最简公分母(x+2)(x-2),得

x+2=4.解得

x=2.检验:把x=2代入原方程,方程两边的分式的

分母都为0,这样的分式没有意义.因此,x=2不是原分式方程的根,从而原分式方程无解.

从例2看到,方程左边的分式的分母x-2是最简公分母(x+2)(x-2)的一个因式.

在检验时只要把所求出的未知数的值代入最简公分母中,如果它使最简公分母的值不等于0,那么它是原分式方程的一个根;

如果它使最简公分母的值为0,那么它不是原分式方程的根,称它是原方程的增根.

例2

解方程:

解分式方程有可能产生增根,因此解分式方程必须检验.说一说解可化为一元一次方程的分式方程的基本步骤有哪些?可化为一元一次方程的分式方程一元一次方程一元一次方程的解

把一元一次方程的解代入最简公分母中,若它的值不等于0,则这个解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论