平方差公式 省赛获奖_第1页
平方差公式 省赛获奖_第2页
平方差公式 省赛获奖_第3页
平方差公式 省赛获奖_第4页
平方差公式 省赛获奖_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

14.2乘法公式14.2.1平方差公式

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(a+b)(m+n)=am+an+bm+bn.回忆:多项式与多项式相乘的法则1.经历探索平方差公式的过程,会推导平方差公式.2.理解平方差公式的结构特征,灵活应用平方差公式.(x+1)(x-1);(2)(a+2)(a-2);

(3)(3-x)(3+x);(4)(2x+1)(2x-1).观察上述算式,你能发现什么规律?运算出结果后,你又发现什么规律?等号的左边:两个数的和与差的积,等号的右边:是这两个数的平方差.=a2-4=4x2-1平方差公式:(a+b)(a-b)=a2-b2.即两个数的和与这两个数的差的积,等于这两个数的平方差.(a+b)(a-b)=a2-b2.a2-ab+ab-b2=归纳

请从这个正方形纸板上,剪下一个边长为b的小正方形,如图1,拼成如图2的长方形,你能根据图中的面积说明平方差公式吗?(a+b)(a-b)=a2-b2图1图2验证【例1】运用平方差公式计算:(1)(3x+2)(3x-2).(2)(b+2a)(2a-b).【解析】

(1)(3x+2)(3x-2)=(3x)2-22=9x2-4.(2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)2-b2=4a2-b2.只有符合(a+b)(a-b)的形式才能用平方差公式【例2】计算(1)102×98.(2)(y+2)(y-2)-(y-1)(y+5).【解析】(1)102×98=(100+2)(100-2)=1002-22=10000-4=9996.(2)原式=(y2-22)-(y2+5y-y-5)=y2-22-y2-5y+y+5=-4y+1.

从例题中,你认为运用公式解决问题时应注意什么?总结经验(1)在运用平方差公式之前,一定要看是否具备公式的结构特征;(2)一定要找准哪个数或式相当于公式中的a,哪个数或式相当于公式中的b;(3)总结规律:一般地,“第一个数”a的符号相同,“第二个数”b

的符号相反;(4)公式中的字母a,b可以是具体的数、单项式、多项式等;(5)不能忘记写公式中的“平方”.1.下列多项式乘法中,能用平方差公式计算的是()

(1)(x+1)(1+x); (2)(a+b)(b-a);(3)(-a+b)(a-b);(4)(x2-y)(x+y2);(5)(-a-b)(a-b); (6)(c2-d2)(d2+c2).

(2)(5)(6)【跟踪训练】1.(1+x)(1-x)=1-

2.(-3+a)(-3-)=

-a24.(0.3x-2)(

)=4-0.09x23.(x+a)(a

)=a2–x25.(ab)(-x)=x2-2.填空:使等式两边满足平方差公式x2a9-x-aba2b2-x-2-0.3x3.利用平方差公式计算:原式=(-2y-x)(-2y+x)=4y2-x2.【解析】原式=(5+2x)(5-2x)=25-4x2.【解析】原式=[(x+6)-(x-6)][(x+6)+(x-6)]=(x+6-x+6)(x+6+x-6)=12×2x=24x.平方差公式的逆用a2-b2=

(a+b)(a-b)【解析】【解析】原式=(0.5-x)(0.5+x)(x2+0.25)=(0.25-x2)(0.25+x2)=0.0625-x4.(5)100.5×99.5.【解析】原式=(100+0.5)(100-0.5)=10000-0.25=9999.75.通过本课时的学习,需要我们掌握:平方差公式:(a+b)(a-b)=a2-b2.即两个数的和与这两个数的差的积,等于这两个数的平方差.平方差公式的逆用:

a2-b2=

(a+b)(a-b)1.(眉山·中考)下列运算中正确的是()A.B.C.D.【解析】选B.在A中3a+2a=5a;C中;

D中.2.(威海·中考)已知a-b=1,则a2-b2-2b的值为()A.4 B.3C.1 D.0【解析】选C.a2-b2-2b=(a-b)(a+b)-2b=a+b-2b=a-b=1.3.(湖州·中考)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是___________.【解析】图甲的面积=(a+b)(a-b),图乙的面积=a(a-b)+b(a-b)=a2-ab+ab-b2=a2-b2.答案:(a+b)(a-b)=a2-b2

原式=(100-1)(100+1)×10001=(10000-1)(10000+1)=100000000-1=99999999.4.计算99×101×10001.【解析】5.化简:(x-y)(x+y)(x2+y2)(x4+y4)(x8+y8)(x16+y16).原式=(x2-y2)(x2+y2)(x4+y4)(x8+y8)(x16+y16)=(x4-y4)(x4+y4)(x8+y8)(x16+y16)=(x8-y8)(x8+y8)(x16+y16)=(x16-y16)(x16+y16)=x32-y32.【解析】

科学探究

给出下列算式:32-12=8=8×1;52-32=16=8×2;72-52=24=8×3;92-72=32=8×4.(1)观察上面一系列式子,你能发现什么规律?

(2)用含n的式子表示出来

(n为正整数)(3)计算20172-2015

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论