2024届湖南长沙雅礼实验中学八上数学期末经典模拟试题含解析_第1页
2024届湖南长沙雅礼实验中学八上数学期末经典模拟试题含解析_第2页
2024届湖南长沙雅礼实验中学八上数学期末经典模拟试题含解析_第3页
2024届湖南长沙雅礼实验中学八上数学期末经典模拟试题含解析_第4页
2024届湖南长沙雅礼实验中学八上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南长沙雅礼实验中学八上数学期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是()A.24° B.30° C.32° D.36°2.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤33.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③ B.①②④ C.①② D.①②③④4.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE的度数为()A.105° B.120° C.135° D.150°5.三角形的三边长分别是a、b、c,下列各组数据中,能组成直角三角形的是()A.4,5,6 B.7,12,15 C.5,13,12 D.8,8,116.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有A.3种 B.4种 C.5种 D.6种7.若(b≠0),则=()A.0 B. C.0或 D.1或28.一个多边形的内角和是外角和的2倍,则它是()A.六边形 B.七边形 C.八边形 D.九边形9.已知线段a=2cm,b=4cm,则下列长度的线段中,能与a,b组成三角形的是()A.2cm B.4cm C.6cm D.8cm10.下列命题中为假命题的是()A.两直线平行,内错角相等 B.对顶角相等C.两个锐角的和是钝角 D.如果是整数,那么是有理数二、填空题(每小题3分,共24分)11.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片_____张,B类卡片_____张,C类卡片_____张.12.使分式有意义的x的范围是________

。13.如图,在△ABC中∠ABC和∠ACB平分线交于点O,过点O作OD⊥BC于点D,△ABC的周长为21,OD=4,则△ABC的面积是_____.14.如图所示,垂直平分,交于点D,交于点E,若,则_______.15.______________.16.如图,已知,且,那么是的________(填“中线”或“角平分线”或“高”).17.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.18.如图,等腰直角三角形ABC中,AB=4cm.点是BC边上的动点,以AD为直角边作等腰直角三角形ADE.在点D从点B移动至点C的过程中,点E移动的路线长为________cm.三、解答题(共66分)19.(10分)阅读理解在平面直角坐标系中,两条直线,①当时,,且;②当时,.类比应用(1)已知直线,若直线与直线平行,且经过点,试求直线的表达式;拓展提升(2)如图,在平面直角坐标系中,的顶点坐标分别为:,试求出边上的高所在直线的表达式.20.(6分)(1)解方程组(2)解不等式组21.(6分)小明在证明“有两个角相等的三角形是等腰三角形”这一命题时,先画出图形,再写出“已知”,“求证”(如图),证明时他对所作的辅助线描述如下:“过点作的中垂线,垂足为”.(1)请你判断小明辅助线的叙述是否正确;如果不正确,请改正.(2)根据正确的辅助线的做法,写出证明过程.22.(8分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.23.(8分)先化简,再求值:,其中、互为负倒数.24.(8分)如图所示,在,.(1)尺规作图:过顶点作的角平分线,交于;(不写作法,保留作图痕迹)(2)在上任取一点(不与点、重合),连结,,求证:.25.(10分)(1)如图(a),平分,平分.①当时,求的度数.②猜想与有什么数量关系?并证明你的结论.(2)如图(b),平分外角,平分外角,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).26.(10分)如图,在中,,,于,于,交于.(1)求证:;(2)如图1,连结,问是否为的平分线?请说明理由.(3)如图2,为的中点,连结交于,用等式表示与的数量关系?并给出证明.

参考答案一、选择题(每小题3分,共30分)1、C【分析】连接PA,根据线段垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义得到∠PBC=∠ABP,根据三角形内角和定理列式计算即可.【题目详解】连接PA,如图所示:

∵直线L为BC的垂直平分线,

∴PB=PC,

∴∠PBC=∠PCB,

∵直线M为∠ABC的角平分线,

∴∠PBC=∠ABP,

设∠PBC=x,则∠PCB=∠ABP=x,

∴x+x+x+60°+24°=180°,

解得,x=32°,

故选C.【题目点拨】考查的是线段垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、C【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【题目详解】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选C.【题目点拨】本题考查了角平分线的性质,属于简单题,熟悉角平分线的性质是解题关键.3、A【分析】根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【题目详解】如图,∵∠EAF=∠BAC,∴∠BAF=∠CAE;在△AFB与△AEC中,,∴△AFB≌△AEC(SAS),∴BF=CE;∠ABF=∠ACE,∴A、F、B、C四点共圆,∴∠BFC=∠BAC=∠EAF;故①、②、③正确,④错误.故选A..【题目点拨】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.4、B【分析】由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠BDE的度数.【题目详解】∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°﹣∠ACB=180°﹣60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故选:B.【题目点拨】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.5、C【解题分析】试题分析:A、42+52=16+25=41≠62,所以4、5、6不能组成直角三角形;B、72+122=49+144=193≠152,所以7、12、15不能组成直角三角形;C、52+122=25+144=169=132,所以5、12、13可以组成直角三角形;D、82+82=64+64=128≠112,所以8、8、11不能组成直角三角形;故选C.考点:勾股定理的逆定理.6、D【分析】设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤1.【题目详解】解:∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<5;当x=3,y=4时,7×3+5×4=41<1;当x=3,y=5时,7×3+5×5=46<1;当x=3,y=6时,7×3+5×6=51>1舍去;当x=4,y=3时,7×4+5×3=43<1;当x=4,y=4时,7×4+5×4=4<1;当x=4,y=5时,7×4+5×5=53>1舍去;当x=5,y=3时,7×5+5×3=1=1.综上所述,共有6种购买方案.故选D.7、C【题目详解】解:∵,∴a(a-b)=0,∴a=0,b=a.当a=0时,原式=0;当b=a时,原式=故选C8、A【分析】先根据多边形的内角和定理及外角和定理,列出方程,再解方程,即可得答案.【题目详解】解:设多边形是边形.由题意得:解得∴这个多边形是六边形.故选:A.【题目点拨】本题考查内角和定理及外角和定理的计算,方程思想是解题关键.9、B【分析】利用三角形三边关系判断即可,两边之和第三边两边之差.【题目详解】解:,,第三边能与,能组成三角形的是,故选.【题目点拨】考查了三角形三边关系,利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和较大的边,则能组成三角形,否则,不可以.10、C【分析】根据平行线的性质可判断A项,根据对顶角的性质可判断B项,举出反例可判断C项,根据有理数的定义可判断D项,进而可得答案.【题目详解】解:A、两直线平行,内错角相等,是真命题,故本选项不符合题意;B、对顶角相等,是真命题,故本选项不符合题意;C、两个锐角的和不一定是钝角,如20°和30°这两个锐角的和是50°,仍然是锐角,所以原命题是假命题,故本选项符合题意;D、如果是整数,那么是有理数,是真命题,故本选项不符合题意.故选:C.【题目点拨】本题考查了真假命题、平行线的性质、对顶角的性质和有理数的定义等知识,属于基础题型,熟练掌握上述基本知识是解题的关键.二、填空题(每小题3分,共24分)11、211【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.【题目详解】解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+1ab+b2,∵A图形面积为a2,B图形面积为b2,C图形面积为ab,∴需要A类卡片2张,B类卡片1张,C类卡片1张.故答案为:2;1;1.【题目点拨】本题考查了多项式与多项式的乘法运算的应用,正确列出算式是解答本题的关键.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.12、x≠1【分析】根据分式有意义的条件可求解.【题目详解】分母不为零,即x-1≠0,x≠1.故答案是:x≠1.【题目点拨】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.13、1【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=4和OF=OD=4,根据三角形面积公式计算即可.【题目详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=4,同理OF=OD=4,△ABC的面积=×AB×4+×AC×4+×BC×4=1.故答案为:1.【题目点拨】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.14、40°【分析】根据垂直平分线的性质可得AE=BE,再根据等边对等角可得∠ABE=∠A,利用直角三角形两锐角互余可得∠A的度数即∠ABE的度数.【题目详解】解:∵垂直平分,∴AE=BE,∠ADE=90°,∴∠ABE=∠A=90°-=40°,故答案为:40°.【题目点拨】本题考查垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余.理解垂直平分线上的点到线段两端距离相等是解题关键.15、【分析】根据零指数幂和负整数指数幂分别化简,再相乘.【题目详解】解:,故答案为:.【题目点拨】本题考查了有理数的乘法运算,涉及到零指数幂和负整数指数幂,解题的关键是掌握零指数幂和负整数指数幂的计算方法.16、中线【分析】通过证明,可得,从而得证是的中线.【题目详解】∵∴∵,∴∴∴是的中线故答案为:中线.【题目点拨】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理是解题的关键.17、12°.【解题分析】设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x.∴∠P2P1P3=∠P13P14P12=2x,∠P2P3P4=∠P13P12P10=3x,……,∠P7P6P8=∠P8P9P7=7x.∴∠AP7P8=7x,∠AP8P7=7x.在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.18、【解题分析】试题解析:连接CE,如图:∵△ABC和△ADE为等腰直角三角形,∴AC=AB,AE=AD,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=∠3,∵,∴△ACE∽△ABD,∴∠ACE=∠ABC=90°,∴点D从点B移动至点C的过程中,总有CE⊥AC,即点E运动的轨迹为过点C与AC垂直的线段,AB=AB=4,当点D运动到点C时,CE=AC=4,∴点E移动的路线长为4cm.三、解答题(共66分)19、(1)y=2x+5;(2)y=2x+1.【分析】(1)利用平行线性质可知k值相等,进而将P点坐标代入即可求出直线的表达式;(2)由题意设直线AB的表达式为:y=kx+b,求出直线AB的表达式,再根据题意设AB边上的高CD所在直线的直线表达式为y=mx+n,进行分析求出CD所在直线的表达式.【题目详解】(1)∵∥∴,∵直线经过点P(-2,1)∴=2×(-2)+,=5,∴直线的表达式为:y=2x+5.(2)设直线AB的表达式为:y=kx+b∵直线经过∴,解得,∴直线AB的表达式为:;设AB边上的高所在直线的表达式为:y=mx+n,∵CD⊥AB,∴,∵直线CD经过点C(-1,-1),∴∴边上的高所在直线的表达式为:y=2x+1.【题目点拨】此题考查一次函数的性质,理解题意并利用待定系数法求一次函数解析式的解题关键.20、(1);(2).【分析】(1)利用加减消元法解方程组,即可得到答案.(2)先求出每个不等式的解集,然后取解集的公共部分,即可得到答案.【题目详解】解:(1),由①+②,得:,∴,把代入②,解得:,∴方程组的解是:;(2)解不等式①,得:;解不等式②,得:;∴不等式组的解集为:.【题目点拨】本题考查了解一元一次不等式组,解二元一次方程组,解题的关键是熟练掌握解方程组和解不等式组的步骤和方法.21、(1)不正确,应该是:过点作;(2)见解析【分析】(1)不正确.过一点可以作已知直线的垂线,不能作线段的中垂线.(2)利用证明即可.【题目详解】解:(1)不正确.应该是:过点作.(2)∵,∴,∵,,∴,∴.【题目点拨】本题考查等腰三角形的判定,线段的垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、证明见解析.【解题分析】试题分析:由可得则可证明,因此可得试题解析:即,在和中,考点:三角形全等的判定.23、,1【分析】先根据分式混合运算顺序和运算法则化简分式,再代入a、b计算即可.【题目详解】原式===,当、互为负倒数时,∴原式=1.【题目点拨】本题考查分式的化简求值、倒数定义,熟练掌握分式混合运算顺序和运算法则是解答的关键,注意化简结果要化成最简分式或整式.24、(1)图见解析(2)证明见解析【分析】(1)利用基本作图(作已知角的平分线)作∠BAC的平分线交BC于D,则AD为所求;(2)先证明△ABC为等腰三角形,再根据等腰三角形的性质,由AD平分∠BAC可判断AD垂直平分BC,然后根据线段垂直平分线的性质可得EB=EC.【题目详解】(1)解:如图,AD为所作;(2)证明:如图,∵∠ABC=∠ACB,∴△ABC为等腰三角形,∵AD平分∠BAC,∴AD⊥BC,BD=CD,即AD垂直平分BC,∴EB=EC.【题目点拨】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论