2024届江苏省无锡新区数学八上期末检测试题含解析_第1页
2024届江苏省无锡新区数学八上期末检测试题含解析_第2页
2024届江苏省无锡新区数学八上期末检测试题含解析_第3页
2024届江苏省无锡新区数学八上期末检测试题含解析_第4页
2024届江苏省无锡新区数学八上期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡新区数学八上期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列线段中不能组成三角形的是()A.2,2,1 B.2,3,5 C.3,3,3 D.4,3,52.下列运算正确的是()A.3a–2a=1 B.a2·a3=a6 C.(a–b)2=a2–2ab+b2 D.(a+b)2=a2+b23.如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6 C.6 D.124.如图,设(),则的值为()A. B. C. D.5.已知是正整数,则满足条件的最大负整数m为()A.-10 B.-40 C.-90 D.-1606.下列命题中的假命题是()A.三角形的一个外角大于内角B.同旁内角互补,两直线平行C.是二元一次方程的一个解D.方差是刻画数据离散程度的量7.下列各式由左边到右边的变形中,是分解因式的为()A. B.C. D.8.点关于轴的对称点的坐标是A. B. C. D.9.为了筹备班级元旦联欢晚会,班长打算先对全班同学爱吃什么水果进行民意调查,再决定买哪种水果.下面的调查数据中,他最应该关注的是()A.众数 B.中位数 C.平均数 D.加权平均数10.如果点与点关于轴对称,那么的值等于()A. B. C.l D.4039二、填空题(每小题3分,共24分)11.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm1.12.分解因式:3a2+6a+3=_____.13.如图,中,,,,AD是的角平分线,,则的面积为_________.14.计算:__________________.15.若a:b=1:3,b:c=2:5,则a:c=_____.16.请用“如果…,那么…”的形式写一个命题______________17.在平面直角坐标系中,点(2,1)关于y轴对称的点的坐标是_____.18.若方程组无解,则y=kx﹣2图象不经过第_____象限.三、解答题(共66分)19.(10分)如图,已知直线1经过点A(0,﹣1)与点P(2,3).(1)求直线1的表达式;(2)若在y轴上有一点B,使△APB的面积为5,求点B的坐标.20.(6分)已知点A(0,4)、C(﹣2,0)在直线l:y=kx+b上,l和函数y=﹣4x+a的图象交于点B(1)求直线l的表达式;(2)若点B的横坐标是1,求关于x、y的方程组的解及a的值.(3)若点A关于x轴的对称点为P,求△PBC的面积.21.(6分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.22.(8分)如图,长方体底面是长为2cm宽为1cm的长方形,其高为8cm.(1)如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多少?(2)如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要多少?23.(8分)如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.24.(8分)郑州市自2019年12月1日起推行垃圾分类,广大市民对垃圾桶的需求剧增.为满足市场需求,某超市花了7900元购进大小不同的两种垃圾桶共800个,其中,大桶和小桶的进价及售价如表所示.大桶小桶进价(元/个)185售价(元/个)208(1)该超市购进大桶和小桶各多少个?(2)当小桶售出了300个后,商家决定将剩下的小桶的售价降低1元销售,并把其中一定数量的小桶作为赠品,在顾客购买大桶时,买一赠一(买一个大桶送一个小桶),送完即止.请问:超市要使这批垃圾桶售完后获得的利润为1550元,那么小桶作为赠品送出多少个?25.(10分)先化简,再求值:﹣3x2﹣[x(2x+1)+(4x3﹣5x)÷2x],其中x是不等式组的整数解.26.(10分)某超市第一次用元购进甲、乙两种商品,其中甲商品件数的倍比乙商品件数的倍多件,甲、乙两种商品的进价和售价如下表(利润=售价-进价)甲乙进价(元/件)2028售价(元/件)2640(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多元,则第二次乙商品是按原价打几折销售的?

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据三角形的三边关系依次分析各项即可判断.【题目详解】A.,C.,D.,均能组成三角形,不符合题意;B.,不能组成三角形,符合题意,故选B.【题目点拨】本题考查的是三角形的三边关系,解答本题的关键是熟练掌握三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边.2、C【解题分析】分析:利用合并同类项的法则,同底数幂的乘法以及完全平方公式的知识求解即可求得答案.解答:解:A、3a-2a=a,故本选项错误;B、a2·a3=a5,故本选项错误;C、(a-b)2=a2-2ab+b2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.【题目详解】请在此输入详解!3、A【题目详解】∵30°的角所对的直角边等于斜边的一半,,故选A.4、A【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【题目详解】解:甲图中阴影部分面积为a2-b2,乙图中阴影部分面积为a(a-b),则k===,故选A.【题目点拨】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.5、A【解题分析】依题意可得,-10m>0且是完全平方数,因此可求得m<0,所以满足条件的m的值为-10.故选A.6、A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【题目详解】解:在三角形内角中大于90°角的外角是一个锐角,故A选项符合题目要求;同旁内角互补,两直线平行,故B选项不符合题目要求;是二元一次方程的一个解,故C选项不符合题目要求;方差是刻画数据离散程度的量,故D选项不符合题目要求.故选:A【题目点拨】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键.7、D【分析】根据分解因式的概念:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),逐一判定即可.【题目详解】A选项,不符合题意;B选项,不能确定是否为0,不符合题意;C选项,不符合题意;D选项,是分解因式,符合题意;故选:D.【题目点拨】此题主要考查对分解因式的理解,熟练掌握,即可解题.8、A【分析】再根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【题目详解】解:∵∴M点关于x轴的对称点的坐标为,故选A.【题目点拨】此题考查关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律9、A【解题分析】众数、中位数、平均数从不同角度反映了一组数据的集中趋势,但该问题应当看最爱吃哪种水果的人最多,故应当用众数.【题目详解】此问题应当看最爱吃哪种水果的人最多,应当用众数.故选A.【题目点拨】本体考查了众数、中位数、平均数的意义,解题时要注意题目的实际意义.10、C【分析】利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点M(x,y)关于x轴的对称点M′的坐标是(x,-y),进而得出答案.【题目详解】解:∵点P(a,2019)与点Q(2020,b)关于x轴对称,

∴a=2020,b=-2019,

∴,

故选:C.【题目点拨】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.二、填空题(每小题3分,共24分)11、2【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【题目详解】解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a1,正方形B的面积=b1,正方形C的面积=c1,正方形D的面积=d1,又∵a1+b1=x1,c1+d1=y1,∴正方形A、B、C、D的面积和=(a1+b1)+(c1+d1)=x1+y1=71=2cm1.故答案为:2.【题目点拨】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方是解答本题的关键.12、3(a+1)2【分析】首先提取公因式,然后应用完全平方公式继续分解.【题目详解】3a2+6a+3=.故答案为.考点:分解因式.13、8【分析】设AD和BC交于点E,过E作EF垂直于AC于点F,根据角平分线性质意有BE=EF,可证△ABE≌△AEF,设BE=x,EC=8-x,在Rt△EFC中利用勾股定理计算出EF和EC的长度,然后由面积相等,可求DC的长度,应用勾股定理求出DE,再由△CDE的面积求出DG,计算面积即可.【题目详解】解:如图所示,设AD和BC交于点E,过E作EF垂直于AC于点F,过D作DG垂直于BC交BC于点G∵AD是的角平分线,∠ABC=90°,∠AFE=90°,∴BE=FE在Rt△ABE和Rt△AFE中∴Rt△ABE≌Rt△AFE(HL)∴AB=AF=6,在Rt△ABC中,,∴AC=10∴FC=4设BE=x,则EC=8-x,在Rt△EFC中由勾股定理可得:解得x=3在Rt△ABE中由勾股定理可得:∴AE=∵∴CD=,在Rt△CDE中由勾股定理可得:∴DE=,∵∴∴GD=2∴=8,故答案为:8【题目点拨】本题主要考查三角形综合应用,解题的关键是利用角平分线性质构造辅助线,然后结合面积相等和勾股定理求相关长度.14、x1-y1【分析】根据平方差公式(a+b)(a-b)=a1-b1计算,其特点是:一项的符号相同,另一项项的符号相反,可得到答案.【题目详解】x1-y1.故答案为:x1-y1.【题目点拨】此题主要考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.15、2∶1【解题分析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.详解:a:b=1:3=(1×2):(3×2)=2:6;

b:c=2:5=(2×3):(5×3)=6:1;,

所以a:c=2:1;

故答案为2:1.点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.16、答案不唯一【解题分析】本题主要考查了命题的定义任何一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.答案不唯一,例如:如果两个角是同位角,那么这两个角相等.17、(-2,1)【解题分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得点(2,1)关于y轴对称的点的坐标是(-2,1).18、一【分析】根据两直线平行没有公共点得到k=3k+1,解得k=﹣,则一次函数y=kx﹣2为y=﹣x﹣2,然后根据一次函数的性质解决问题.【题目详解】解:∵方程组无解,∴k=3k+1,解得k=﹣,∴一次函数y=kx﹣2为y=﹣x﹣2,一次函数y=﹣x﹣2经过第二、三、四象限,不经过第一象限.故答案为一.【题目点拨】本题考查一次函数与二元一次方程组的关系、一次函数图像与系数的关系,解题的关键是求出k的值.三、解答题(共66分)19、(1)y=2x﹣1;(2)点B的坐标为(0,4)或(0,﹣6).【分析】(1)利用待定系数法求出直线l的表达式即可;(2)设B(0,m),得出AB的长,由P的横坐标乘以AB长的一半表示出三角形APB面积,由已知面积列方程求出m的值,即可确定出B的坐标.【题目详解】解:(1)设直线l表达式为y=kx+b(k,b为常数且k≠0),把A(0,﹣1),P(2,3)代入得:,解得:,则直线l表达式为y=2x﹣1;(2)设点B的坐标为(0,m),则AB=|1+m|,∵△APB的面积为5,∴AB•xP=5,即|1+m|×2=5,整理得:|1+m|=5,即1+m=5或1+m=﹣5,解得:m=4或m=﹣6,故点B的坐标为(0,4)或(0,﹣6).【题目点拨】本题是一次函数的综合题,涉及了待定系数法求一次函数解析式、三角形的面积等知识,解答本题的关键是数形结合思想及分类讨论思想的运用.20、(1)y=2x+4(2)x=1,y=6;a=10(3)1【解题分析】(1)由于点A、C在直线上,可用待定系数法确定直线l的表达式;(2)先求出点B的坐标,即得方程组的解.代入组中方程求出a即可;(3)由于S△BPC=S△PAB+S△PAC,分别求出△PBA和△PAC的面积即可.【题目详解】(1)由于点A、C在直线l上,∴,∴k=2,b=4所以直线l的表达式为:y=2x+4(2)由于点B在直线l上,当x=1时,y=2+4=6所以点B的坐标为(1,6)因为点B是直线l与直线y=﹣4x+a的交点,所以关于x、y的方程组的解为,把x=1,y=6代入y=﹣4x+a中,得a=10;(3)如图:因为点A与点P关于x轴对称,所以点P(0,﹣4),所以AP=4+4=8,OC=2,所以S△BPC=S△PAB+S△PAC=×8×1+×8×2=4+8=1.【题目点拨】本题考查了待定系数法确定函数解析式、三角形的面积、直线与方程组的关系等知识点.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.21、小芳的速度是50米/分钟.【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【题目详解】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.22、(1)所用细线最短需要10cm;(2)所用细线最短需要cm.【题目详解】(1)将长方体的四个侧面展开如图,连接A、B,

根据两点之间线段最短,AB=cm;(2)如果从点A开始经过4个侧面缠绕2圈到达点B,相当于直角三角形的两条直角边分别是12和8,根据勾股定理可知所用细线最短需要cm.答:(1)所用细线最短需要10cm.(2)所用细线最短需要cm.23、∠BAD=40°,∠AOC=115°.【分析】先根据直角三角形的两个锐角互余,求得再根据角平分线的定义,求得最后根据三角形内角和定理,求得中的度数.【题目详解】∵AD是高,中,∴△ABC中,∵AE,CF是角平分线,∴△AOC中,24、(1)超市购进大桶300个,小桶500个;(2)小桶作为赠品送出50个.【分析】(1)设购进大桶x个,小桶y个,根据题意列出二元一次方程组求解即可;(2)设小桶作为赠品送出m个,由题意列出方程求解即可.【题目详解】(1)设购进大桶x个,小桶y个,由题意得解之,得答:该超市购进大桶300个,小桶500个;(2)设小桶作为赠品送出m个,由题意得解之,得.答:小桶作为赠品送出50个.【题目点拨】此题主要考查二元一次方程组的实际应用,解题关键是理解题意,找出关系式.25、-7x2-x+,【解题分析】先根据整式的混合运算顺序和运算法则化简原式,再解不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论