河南省商城县长竹园第一中学2024届八上数学期末考试模拟试题含解析_第1页
河南省商城县长竹园第一中学2024届八上数学期末考试模拟试题含解析_第2页
河南省商城县长竹园第一中学2024届八上数学期末考试模拟试题含解析_第3页
河南省商城县长竹园第一中学2024届八上数学期末考试模拟试题含解析_第4页
河南省商城县长竹园第一中学2024届八上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省商城县长竹园第一中学2024届八上数学期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,每一个直角三角形的两条直角的长分别是3和4,则中间的小正方形和大正方形的面积比是()A.3:4 B.1:25 C.1:5 D.1:102.下列图形中,对称轴最多的图形是()A. B. C. D.3.用科学记数法表示:0.000000109是()A.1.09×10﹣7 B.0.109×10﹣7 C.0.109×10﹣6 D.1.09×10﹣64.下列图形中,是轴对称图形且只有三条对称轴的是()A. B. C. D.5.在平面直角坐标系xOy中,A(1,3),B(5,1),点M在x轴上,当MA+MB取得最小值时,点M的坐标为()A.(5,0) B.(4,0) C.(1,0) D.(0,4)6.入冬以来,我校得流行性感冒症状较重,据悉流感病毒的半径为0.000000126,请把0.000000126用科学记数法表示为()A. B. C. D.7.一副三角板如图摆放,边DE∥AB,则∠1=()A.135° B.120° C.115° D.105°8.若ax=3,ay=2,则a2x+y等于()A.18 B.8 C.7 D.69.已知点Q与点P(3,-2)关于x轴对称,那么点Q的坐标为()A.(-3,2) B.(3,2) C.(-3,-2) D.(3,-2)10.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形11.函数y=ax﹣a的大致图象是()A. B. C. D.12.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图中,分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象,以下说法:①甲比乙提前12分到达;②甲的平均速度为15千米/时;③甲乙相遇时,乙走了6千米;④乙出发6分钟后追上甲.其中正确的有()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.如果一个三角形的两边长分别是2cm和7cm,且第三边为奇数,则三角形的周长是___cm.14.如图,正方形中,,是的中点.将沿对折至,延长交于点,则的长是_______.15.多项式因式分解为_________16.在△ABC中,∠A=60°,∠B=∠C,则∠B=______.17.已知,,是的三边,且,则的形状是__________.18.化简得.三、解答题(共78分)19.(8分)在四边形中,,,是对角线,于点,于点(1)如图1,求证:(2)如图2,当时,连接、,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形的面积都等于四边形面积的.20.(8分)先化简再求值:求的值,其中.21.(8分)阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式的最小值.方法如下:∵,由,得;∴代数式的最小值是4.(1)仿照上述方法求代数式的最小值.(2)代数式有最大值还是最小值?请用配方法求出这个最值.22.(10分)网购是现在人们常用的购物方式,通常网购的商品为防止损坏会采用盒子进行包装,均是容积为立方分米无盖的长方体盒子(如图).(1)图中盒子底面是正方形,盒子底面是长方形,盒子比盒子高6分米,和两个盒子都选用相同的材料制作成侧面和底面,制作底面的材料1.5元/平方分米,其中盒子底面制作费用是盒子底面制作费用的3倍,当立方分米时,求盒子的高(温馨提示:要求用列分式方程求解).(2)在(1)的条件下,已知盒子侧面制作材料的费用是0.5元/平方分米,求制作一个盒子的制作费用是多少元?(3)设的值为(2)中所求的一个盒子的制作费用,请分解因式;.23.(10分)求证:三角形三个内角的和是180°24.(10分)计算及解方程组:(1)(2)25.(12分)几个小伙伴打算去音乐厅观看演出,他们准备用元钱购买门票,下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴的人数.26.如图,平面直角坐标系中,点A在第四象限,点B在x轴正半轴上,在△OAB中,∠OAB=90°,AB=AO=6,点P为线段OA上一动点(点P不与点A和点O重合),过点P作OA的垂线交x轴于点C,以点C为正方形的一个顶点作正方形CDEF,使得点D在线段CB上,点E在线段AB上.(1)①求直线AB的函数表达式.②直接写出直线AO的函数表达式;(2)连接PF,在Rt△CPF中,∠CFP=90°时,请直接写出点P的坐标为;(3)在(2)的前提下,直线DP交y轴于点H,交CF于点K,在直线OA上存在点Q.使得△OHQ的面积与△PKE的面积相等,请直接写出点Q的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据勾股定理求得大正方形的边长,然后由正方形的面积公式求得其面积;根据线段间的和差关系求得小正方形的边长,然后由正方形的面积公式求得其面积.【题目详解】由勾股定理得:大正方形的边长,则大正方形的面积=52=25;

小正方形的边长为:4-3=1,则其面积为:12=1.

∴小正方形和大正方形的面积比是.故选:B.【题目点拨】本题考查了以弦图为背景的计算题.本题是用数形结合来证明勾股定理,锻炼了同学们的数形结合的思想方法.2、A【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【题目详解】解:A、圆有无数条对称轴;

B、正方形有4条对称轴;

C、该图形有3条对称轴;

D、长方形有2条对称轴;

故选:A.【题目点拨】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.3、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】用科学记数法表示:0.000000109是1.09×10﹣1.故选:A.【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、C【解题分析】首先确定轴对称图形,再根据对称轴的概念,确定对称轴的条数.【题目详解】解:A、不是轴对称图形;B、是轴对称图形,有2条对称轴;C、是轴对称图形,有3条对称轴;D、是轴对称图形,有4条对称轴;故选:C.【题目点拨】掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.能够熟练说出轴对称图形的对称轴条数.5、B【分析】根据对称性,作点B关于x轴的对称点B′,连接AB′与x轴交于点M,根据两点之间线段最短,后求出的解析式即可得结论.【题目详解】解:如图所示:作点B关于x轴的对称点B′,连接AB′交x轴于点M,此时MA+MB=MA+MB′=AB′,根据两点之间线段最短,因为:B(5,1),所以:设直线为把代入函数解析式:解得:所以一次函数为:,所以点M的坐标为(4,0)故选:B.【题目点拨】本题考查了轴对称-最短路线问题,解决本题的关键是掌握对称性质.6、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.000000126=1.26×10-1.

故选:B.【题目点拨】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D【分析】根据两直线平行同旁内角互补解答即可.【题目详解】解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选D.【题目点拨】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.8、A【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【题目详解】解:∵ax=3,ay=2,

∴a2x+y=(ax)2×ay=32×2=1.

故选:A.【题目点拨】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.9、B【解题分析】平面直角坐标系中,两点关于x轴对称,则它们横坐标相同,纵坐标互为相反数.【题目详解】点Q与点P(3,-2)关于x轴对称,则Q点坐标为(3,2),故选B.【题目点拨】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10、B【解题分析】试题解析:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B.【题目点拨】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.11、C【解题分析】将y=ax-a化为y=a(x-1),可知图像过点(1,0),进行判断可得答案.【题目详解】解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A、B、D中的图象都不过点(1,0),所以C项图象正确.故本题正确答案为C.【题目点拨】本题主要考查一次函数的图象和一次函数的性质.12、B【分析】根据题目的要求结合一次函数的性质,先计算出相关的选项结果,再判断正误.【题目详解】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度千米/时;故②正确;

④设乙出发x分钟后追上甲,则有:解得,故④正确;

③由④知:乙第一次遇到甲时,所走的距离为:,故③错误;

所以正确的结论有三个:①②④,

故选B.【题目点拨】此题重点考查学生对一次函数的实际应用,掌握一次函数的性质是解题的关键.二、填空题(每题4分,共24分)13、16【分析】根据三角形的三边关系定理求出第三边的长,即可得出结论.【题目详解】∵7﹣2<第三边<7+2,∴5<第三边<1.∵第三边为奇数,∴第三边=7,所以三角形的周长是2+7+7=16(cm).故答案为16cm.【题目点拨】首先根据题意求出第三边,然后再求出周长.14、【分析】连接AH,根据正方形及折叠的性质得到Rt△ADH≌Rt△AFH,再设DH=x,在△CEH中运用勾股定理解答即可.【题目详解】解:连接AH,∵在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ABE沿AE对折至△AFE,∴AB=AF,BE=EF,∠B=∠AFE=90°,∴AD=AF,∠D=∠AFH=90°,又∵AH=AH,在Rt△ADH和Rt△AFH中,,∴Rt△ADH≌Rt△AFH(HL)∴DH=FH,∵E是边BC的中点,∴BE=CE=4,设DH=x,则CH=8−x,EH=x+4,∴在Rt△CEH中,即解得:,故答案为:.【题目点拨】此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.15、x(x-10)【分析】利用平方差公式分解因式再化简得出即可.【题目详解】解:故答案为:【题目点拨】此题主要考查了平方差公式分解因式,熟练应用平方差公式是解题关键.16、60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C,进而得到∠B的度数.【题目详解】解:∵∠A、∠B、∠C是△ABC的三个内角,∴∠A+∠B+∠C=180°.∵∠A=60°,∠B=∠C,∴∠B=60°,故答案为:60°.【题目点拨】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.17、等腰三角形【分析】将等式两边同时加上得,然后将等式两边因式分解进一步分析即可.【题目详解】∵,∴,即:,∵,,是的三边,∴,,都是正数,∴与都为正数,∵,∴,∴,∴△ABC为等腰三角形,故答案为:等腰三角形.【题目点拨】本题主要考查了因式分解的应用,熟练掌握相关方法是解题关键.18、.【解题分析】试题分析:原式=.考点:分式的化简.三、解答题(共78分)19、(1)详见解析;(2).【分析】(1)根据平行线的性质可得,然后根据AAS即可证得结论;(2)由已知条件、直角三角形的性质和平行线的性质可依次得出∠BAE=30°,∠ABE=60°,∠ADB=30°,然后利用30°角的直角三角形的性质可得BE与AB,AE与AD的关系,进而可得△ABE的面积=四边形ABCD的面积,即得△CDF的面积与四边形ABCD的面积的关系;作EG⊥BC于G,由直角三角形的性质得出EG与AB的关系,进而可得△BCE的面积=四边形ABCD的面积,同理可得△ADF的面积与四边形ABCD的面积的关系,问题即得解决.【题目详解】(1)证明:,,,,,≌(AAS),;(2)△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=四边形ABCD面积的.理由如下:∵AD=BC,,DB=BD,∴△ADB≌△CBD,∴四边形ABCD的面积=2×△ABD的面积=AB×AD,∵,∴∠BAE=30°,∴∠ABE=60°,∠ADB=30°,∴BE=AB,AE=AD,∴△ABE的面积=BE×AE=×AB×AD=AB×AD=四边形ABCD的面积;∵△ABE≌△CDF,∴△CDF的面积═四边形ABCD的面积;作EG⊥BC于G,如图所示:∵∠CBD=∠ADB=30°,∴EG=BE=×AB=AB,∴△BCE的面积=BC×EG=BC×AB=BC×AB=四边形ABCD的面积,同理:△ADF的面积=矩形ABCD的面积.【题目点拨】本题考查了全等三角形的判定与性质、含30°角的直角三角形的性质、平行线的性质、三角形面积公式等知识;熟练掌握30°角的直角三角形的性质和全等三角形的判定与性质是解题的关键.20、,【分析】先把分式的分子分母分解因式,然后约分化简,注意运算的结果要化成最简分式或整式,再把给定的值代入求值.【题目详解】;把代入得:原式.【题目点拨】考查了有理数的混合运算,关键是进行有理数的混合运算时,注意各个运算律的运用,可以运算过程得到简化.21、(1);(2)有最大值,最大值为32.【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【题目详解】解:(1)∵,由,得;∴代数式的最小值是;(2),∵,∴,∴代数式有最大值,最大值为32.【题目点拨】本题考查的是配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.22、(1)B盒子的高为3分米;(2)制作一个盒子的制作费用是240元;(3).【分析】(1)先以“盒子底面制作费用是盒子底面制作费用的3倍”为等量关系列出分式方程,再求解分式方程,最后检验作答即得.(2)先分别求出A盒子的底面积和四个侧面积,再求出各个面的制作费用之和即得.(3)先依据(2)写出多项式,再应用十字相乘法因式分解即得.【题目详解】(1)设B盒子的高为h分米.由题意得:解得:经检验得:是原分式方程的解.答:B盒子的高为3分米.(2)∵由(1)得B盒子的高为3分米∴A盒子的高为:(分米)∴A盒子的底面积为:(平方分米)∴A盒子的底边长为:(分米)∴A盒子的侧面积为:(平方分米)∵底面的材料1.5元/平方分米,侧面制作材料的费用是0.5元/平方分米∴制作一个盒子的制作费用是:(元)答:制作一个盒子的制作费用是240元.(3)∵由(2)得:∴∴故答案为:.【题目点拨】本题考查分式方程的实际应用、整式的“十字相乘法”因式分解,实际问题找等量关系是解题关键,注意分式方程求解后的检验是易遗漏点;因式分解注意观察形式选择合适的方法,熟练掌握十字相乘法因式分解是解题关键,23、见解析【解题分析】分析:根据题目写出已知,求证,证明即可.详解:已知:的三个内角分别为;

求证:.

证明:过点A作直线MN,使MN∥BC.

∵MN∥BC,

∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)

∵∠MAB+∠NAC+∠BAC=180°(平角定义)

∴∠B+∠C+∠BAC=180°(等量代换)

即∠A+∠B+∠C=180°.点睛:考查平行线的性质,过点A作直线MN,使MN∥BC.是解题的关键.24、(1);(2)【分析】(1)先同时计算除法、乘法及化简绝对值,再合并同类二次根式;(2)先将两个方程化简,再利用代入法解方程组.【题目详解】(1),=,=;(2),由①得:3x-y=8.③,由②得:5x-3y=-28.④,由③得:y=3x-8,将y=3x-8代入④,得5x-3(3x-8)=28,解得x=13,将x=13代入③,得y=31,∴原方程组的解是.【题目点拨】此题考查计算能力,(1)考查分式的混合运算,将分式正确化简,按照计算顺序计算即可得到答案;(2)考查二元一次方程的解法,复杂的方程应先化简,再根据方程组的特点选用代入法或是加减法求出方程组的解.25、8人【分析】设小伙伴的人数为人,根据图中所给的信息,从左图可以得到票价为:,右图可以知道票价打七折之后为:,根据折扣列方程求解即可.【题目详解】解:设小伙伴的人数x人,依题意得解得经检验:是原方程的解答:小伙伴的人数为8人.【题目点拨】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.26、(1)①y=x﹣12;②y=﹣x;(2)(3,﹣3);(3)(2,﹣2)或(﹣2,2)【分析】(1)①利用等腰直角三角形的性质可以得到点A和点B的坐标,从而根据待定系数法求得直线AB的函数表达式;②根据点A和点O的坐标可以求得直线AO的表达式;(2)根据题意画出图形,首先得出点P、F、E三点共线,然后根据正方形的性质得出PE是△OAB的中位线,即点P为OA的中点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论