乌兰察布市重点中学2024届八上数学期末复习检测模拟试题含解析_第1页
乌兰察布市重点中学2024届八上数学期末复习检测模拟试题含解析_第2页
乌兰察布市重点中学2024届八上数学期末复习检测模拟试题含解析_第3页
乌兰察布市重点中学2024届八上数学期末复习检测模拟试题含解析_第4页
乌兰察布市重点中学2024届八上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

乌兰察布市重点中学2024届八上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.2.若a=,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H3.一辆客车从霍山开往合肥,设客车出发th后与合肥的距离为skm,则下列图象中能大致反映s与t之间函数关系的是()A. B. C. D.4.如图所示,将△ABC沿着DE折叠,使点A与点N重合,若∠A=65°,则∠1+∠2=()A.25° B.130°C.115° D.65°5.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了,下坡用了,根据题意可列方程组()A. B.C. D.6.如图,直线,被直线、所截,并且,,则等于()A.56° B.36° C.44° D.46°7.下列说法中,不正确的是()A.﹣的绝对值是﹣ B.﹣的相反数是﹣C.的立方根是2 D.﹣3的倒数是﹣8.当为()时,分式的值为零.A.0 B.1 C.-1 D.29.如图,≌,下列结论正确的是()A. B. C. D.10.某化肥厂计划每天生产化肥x吨,由于采用了新技术,每天多生产化肥3吨,因此实际生产150吨化肥与原计划生产化肥120吨化肥的时间相等,则下列所列方程正确的是()A. B.C. D.11.已知,,那么的值是()A.11 B.16 C.60 D.15012.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④当甲、乙两车相距千米时,其中正确的结论有()A.个 B.个 C.个 D.个二、填空题(每题4分,共24分)13.等腰三角形的一个角是70°,则它的底角是_____.14.在等腰中,若,则__________度.15.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=_____°.16.如图,在中,,,,为的中点,为线段上任意一点(不与端点重合),当点在线段上运动时,则的最小值为__________.17.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是__cm.18.若关于的方程的解不小于,则的取值范围是___________________.三、解答题(共78分)19.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.20.(8分)已知中,为的中点.(1)如图1,若分别是上的点,且.求证:为等腰直角三角形;(2)若分别为延长线上的点,如图2,仍有,其他条件不变,那么是否仍为等腰直角三角形?请证明你的结论.21.(8分)已知:如图,在中,,垂足为点,,垂足为点,且.求证:.22.(10分)一次函数的图像经过,两点.(1)求的值;(2)判断点是否在该函数的图像上.23.(10分)解不等式组.24.(10分)某中学八年级学生在学习等腰三角形的相关知识时时,经历了以下学习过程:(1)(探究发现)如图1,在中,若平分,时,可以得出,为中点,请用所学知识证明此结论.(2)(学以致用)如果和等腰有一个公共的顶点,如图2,若顶点与顶点也重合,且,试探究线段和的数量关系,并证明.(3)(拓展应用)如图3,在(2)的前提下,若顶点与顶点不重合,,(2)中的结论还成立吗?证明你的结论25.(12分)如图,四边形中,,,,是四边形内一点,是四边形外一点,且,,(1)求证:;(2)求证:.26.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;(2)如图,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程.详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即.故选C.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.2、C【解题分析】根据被开方数越大算术平方根越大,可得答案.【题目详解】解:∵<<,∴3<<4,∵a=,∴3<a<4,故选:C.【题目点拨】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<<4是解题关键.3、B【解题分析】分析:因为匀速行驶,图象为线段,时间和路程是正数,客车从霍山出发开往合肥,客车与合肥的距离越来越近,路程由大变小,由此选择合理的答案.详解:客车是匀速行驶的,图象为线段,s表示客车从霍山出发后与合肥的距离,s会逐渐减小为0;A、C、D都不符.故选B.点睛:本题主要考查了函数图象,解题时应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.4、B【分析】先根据图形翻转变化的性质得出∠AED=∠NED,∠ADE=∠NDE,再根据三角形内角和定理即可求出∠AED+∠ADE及∠NED+∠NDE的度数,再根据平角的性质即可求出答案.【题目详解】解:∵△NDE是△ADE翻转变换而成的,∴∠AED=∠NED,∠ADE=∠NDE,∠A=∠N=65°∴∠AED+∠ADE=∠NED+∠NDE=180°-65°=115°∴∠1+∠2=360°-2×(∠NED+∠NDE)=360°-2×115°=130°故选:B【题目点拨】本题主要考查简单图形折叠问题,图形的翻折部分在折叠前后的形状、大小不变,是全等的,解题时充分挖掘图形的几何性质,掌握其中的基本关系是解题的关键.5、B【分析】根据路程=时间乘以速度得到方程,再根据总时间是16分钟即可列出方程组.【题目详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米,∴,∴,故选:B.【题目点拨】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.6、D【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【题目详解】解:如图,∵l1∥l2,

∴∠1=∠3=44°,

又∵l3⊥l4,

∴∠2=90°-44°=46°,

故选:D.【题目点拨】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7、A【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【题目详解】解:A、﹣的绝对值不是﹣,故A选项不正确,所以本选项符合题意;B、﹣的相反数是﹣,正确,所以本选项不符合题意;C、=8,所以的立方根是2,正确,所以本选项不符合题意;D、﹣3的倒数是﹣,正确,所以本选项不符合题意.故选:A.【题目点拨】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.8、B【解题分析】要使分式的值为零,需要分式的分子为零而分母不为零,据此列式解答即可.【题目详解】根据题意可得,,∴当x=1时,分式的值为零.故选B.【题目点拨】本题考查分式的值何时为0,熟知分式值为0条件:分子为0且分母不为0是解题的关键.9、B【分析】全等三角形的性质:对应边相等,对应角相等,据此逐一判断即可的答案.【题目详解】∵△ABC≌△DEF,∴AB=DE,∠B=∠DEF,∠ACB=∠F,故A、C、D选项错误,不符合题意,∵△ABC≌△DEF,∴BC=EF,∴BC-CE=EF-CE,∴BE=CF,故B选项正确,符合题意,故选:B.【题目点拨】本题考查全等三角形的性质,正确找出对应边与对应角是解题关键.10、C【分析】表示出原计划和实际的生产时间,根据时间相等,可列出方程.【题目详解】解:设计划每天生产化肥x吨,列方程得=.故选:C.【题目点拨】本题考查分式方程的应用,关键是掌握工程问题的数量关系:工作量=工作时间×工作效率,表示出工作时间.11、D【分析】由幂的乘方、同底数幂相乘的运算法则进行计算,即可得到答案.【题目详解】解:∵,,∴;故选:D.【题目点拨】本题考查了幂的乘方、同底数幂相乘,解题的关键是掌握运算法则进行计算.12、B【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【题目详解】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且乙用时3小时,即比甲早到1小时,故①②都正确;

设甲车离开A城的距离y与t的关系式为y甲=kt,

把(5,300)代入可求得k=60,

∴y甲=60t,

设乙车离开A城的距离y与t的关系式为y乙=mt+n,

把(1,0)和(4,300)代入可得,解得,∴y乙=100t-100,

令y甲=y乙可得:60t=100t-100,解得t=2.5,

即甲、乙两直线的交点横坐标为t=2.5,

此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;

令|y甲-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,

当100-40t=50时,可解得t=,当100-40t=-50时,可解得t=,令y甲=50,解得t=,令y甲=250,解得t=,∴当t=时,y甲=50,此时乙还没出发,此时相距50千米,

当t=时,乙在B城,此时相距50千米,

综上可知当t的值为或或或时,两车相距50千米,故④错误;

综上可知正确的有①②共两个,

故选:B.【题目点拨】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.二、填空题(每题4分,共24分)13、55°或70°.【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【题目详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为55°或70°.【题目点拨】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.14、40°或70°或100°.【分析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.【题目详解】(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°-∠A-∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C=(180°-∠A)=70°;故答案为:40°或70°或100°.【题目点拨】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能进行分类讨论,并求出各种情况的时∠B的度数是解此题的关键.15、35【解题分析】由全等三角形的性质知:对应角∠CAB=∠EAD相等,求出∠CAB=∠EAD,待入求出即可.

解:∵△ABC≌△ADE,

∴∠CAB=∠EAD,

∵∠EAC=∠CAB-∠EAB,∠BAD=∠EAD-∠EAB,

∴∠BAD=∠EAC,

∴∠BAD=∠EAC=35°.

故答案为:35.16、【分析】本题为拔高题,过点C作AB的垂线交AB于点F,可以根据直角三角形中30°角的特性,得出EF与关系,最后得到,可知当DE-EF为0时,有最小值.【题目详解】过点C作AB的垂线交AB于点F,得到图形如下:根据直角三角形中30°角的特性,可知由此可知故可知,当DE与EF重合时,两条线之间的差值为0,故则的最小值为.【题目点拨】本题属于拔高题,类似于“胡不归”问题,综合性强,是对动点最值问题的全面考察,是中学应该掌握的内容.17、1【解题分析】根据题意,过A点和B点的平面展开图分三种情况,再根据两点之间线段最短和勾股定理可以分别求得三种情况下的最短路线,然后比较大小,即可得到A点到B点的最短路线,本题得以解决.【题目详解】解:由题意可得,

当展开前面和右面时,最短路线长是:当展开前面和上面时,最短路线长是:当展开左面和上面时,最短路线长是:∴一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是1cm,

故答案为:1.【题目点拨】本题主要考查的就是长方体的展开图和勾股定理的实际应用问题.解决这个问题的关键就是如何将长方体进行展开.在解答这种问题的时候我们需要根据不同的方式来对长方体进行展开,然后根据两点之间线段最短的性质通过勾股定理来求出距离.有的题目是在圆锥中求最短距离,我们也需要将圆锥进行展开得出扇形,然后根据三角形的性质进行求值.18、m≤-8【分析】先根据题意求到的解,会是一个关于的代数式,再根据不小于列出不等式,即可求得正确的答案.【题目详解】解:解得故答案为:.【题目点拨】本题考查的是方程的相关知识,根据题意列出含有m的不等式是解题的关键.三、解答题(共78分)19、(1)﹣4≤y<1;(2)点P的坐标为(2,﹣2).【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【题目详解】设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=1,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<1.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质20、(1)见解析;(2)仍为等腰直角三角形,证明见解析.【分析】(1)连接,根据等腰直角三角形三线合一性质,证得BD=AD,再根据全等三角形的判定与方法解题即可;(2)连接,由三角形的一个外角等于不相邻两个内角和性质,证得∠EBD=∠FAD,再由全等三角形的判定与性质解题即可.【题目详解】(1)证明:连接,,为中点∴AD⊥BD,∠B=∠C=45°,∠BAD=∠CAD=45°∴∠B=∠BAD=∠CAD=45°,∴BD=AD在△BDE和△ADF中,,,即:为等腰直角三角形.(2)解:仍为等腰直角三角形.证明:连接∵∠ABC=∠BAD=45°,∴∠EBD=180°-45°=135°,∠FAD=90°+45°=135°∴∠EBD=∠FAD.在△BDE和△ADF中,,,即:为等腰直角三角形.【题目点拨】本题考查等腰三角形的性质、三线合一性质、等腰直角三角形的判定、全等三角形的判断与性质、三角形外角的性质,综合性较强,是常考考点,难度一般,掌握相关知识是解题关键.21、见解析.【分析】根据垂直的定义得到∠BEC=∠CDB=90°,然后利用HL证明Rt△BEC≌Rt△CDB,根据全等三角形的性质即可得出结论.【题目详解】解:∵BE⊥AC,CD⊥AB,∴∠BEC=∠CDB=90°,在Rt△BEC和Rt△CDB中,,∴Rt△BEC≌Rt△CDB(HL),∴∠DBC=∠ECB,即∠ABC=∠ACB.【题目点拨】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题关键.22、(1)k=-2,b=8;(2)在图象上.【分析】(1)利用待定系数法即可得到k,b的值;(2)将点P的坐标代入函数解析式,如满足函数解析式则点在函数图象上,否则不在函数图象上.【题目详解】(1)把A(3,2),B(1,6)代入得:,解得:∴(2)当时,∴P(,10)在的图象上【题目点拨】本题考查了待定系数法求一次函数的解析式、函数图象上点的坐标与函数关系式的关系.利用待定系数法求函数解析式的一般步骤:(1)先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);(2)将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.23、不等式组的解为x≤-1.【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,即可得不等式组的解集.【题目详解】解:由①得x≤-1,由②得x<1,把①,②两个不等式的解表示在数轴上,如下图:∴不等式组的解为x≤-1.【题目点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24、(1)详见详解;(2)DF=2BE,证明详见详解;(3)DF=2BE,证明详见详解【分析】(1)只要证明△ADB≌△ADC(ASA)即可;(2)如图2中,延长BE交CA的延长线于K,只要证明△BAK≌△CAD(ASA)即可;(3)作FK∥CA交BE的延长线于K,交AB于J,利用(2)中的结论证明即可.【题目详解】解:(1)如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵DA平分∠BAC,∴∠DAB=∠DAC,∵AD=AD,∴△ADB≌△ADC(ASA),∴AB=AC,BD=DC.(2)结论:DF=2BE.理由:如图2中,延长BE交CA的延长线于K.∵CE平分∠BCK,CE⊥BK,∴由(1)中结论可知:CB=CK,BE=KE,∵∠BAK=∠CAD=∠CEK=90°,∴∠ABK+∠K=90°,∠ACE+∠K=90°,∴∠ABK=∠ACD,∵AB=AC,∴△BAK≌△CAD(ASA),CD=BK,∴CD=2BE,即DF=2BE.(3)如图3中,结论不变:DF=2BE.理由:作FK∥CA交BE的延长线于K,交AB于J.∵FK∥AC,∴∠FJB=∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论