版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
怒江市重点中学2024届八上数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列各分式中,最简分式是()A. B. C. D.2.下列式子从左到右变形是因式分解的是()A.B.C.D.3.公式表示当重力为P时的物体作用在弹簧上时弹簧的长度.表示弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P4.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比()A.增加6m2 B.增加9m2 C.减少9m2 D.保持不变5.关于x的方程有增根则a=()A.-10或6 B.-2或-10 C.-2或6 D.-2或-10或66.全球芯片制造已经进入纳米到纳米器件的量产时代.中国自主研发的第一台纳米刻蚀机,是芯片制造和微观加工最核心的设备之一.华为手机搭载了全球首款纳米制程芯片,纳米就是米.数据用科学记数法表示为()A. B. C. D.7.下列根式中不是最简二次根式的是()A. B. C. D.8.若中刚好有,则称此三角形为“可爱三角形”,并且称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是().A.或 B.或 C.或 D.或或9.下列描述不能确定具体位置的是()A.某影剧院排号 B.新华东路号C.北纬度,东经度 D.南偏西度10.如图,在△ABC与△EMN中,,,∠C=∠M=54°,若∠A=66°,则下列结论正确的是()A. B.EN=a C.∠E=60° D.∠N=66°二、填空题(每小题3分,共24分)11.如图,在△ABC中,BF⊥AC于点F,AD⊥BC于点D,BF与AD相交于点E.若AD=BD,BC=8cm,DC=3cm.则AE=_______________cm
.12.写一个函数图象交轴于点,且随的增大而增大的一次函数关系式_______.13.“直角三角形的两个锐角互余”的逆命题是______命题填“真”或“假”.14.已知、,满足,则的平方根为________.15.如图,△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB于E.若BD+AC=3a,则AC=_________.(用含a的式子表示)16.如图,平分,平分,与交于,若,,则的度数为_________.(用表示)17.函数的定义域为______________.18.在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)三、解答题(共66分)19.(10分)三角形三条角平分线交于一点.20.(6分)如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.21.(6分)如图1,将等腰直角三角形绕点顺时针旋转至,为上一点,且,连接、,作的平分线交于点,连接.(1)若,求的长;(2)求证:;(3)如图2,为延长线上一点,连接,作垂直于,垂足为,连接,请直接写出的值.22.(8分)如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,(1)求证:△ABQ≌△CAP;(2)∠CMQ的大小变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)连接PQ,当点P、Q运动多少秒时,△APQ是等腰三角形?23.(8分)如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,请证明∠3=∠424.(8分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.25.(10分)如图,中,,,,若点从点出发以每秒的速度向点运动,设运动时间为秒.(1)若点恰好在的角平分线上,求出此时的值;(2)若点使得时,求出此时的值.26.(10分)我校要进行理化实验操作考试,需用八年级两个班级的学生整理实验器材.已知一班单独整理需要分钟完成.如果一班与二班共同整理分钟后,一班另有任务需要离开,剩余工作由二班单独整理分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【题目详解】=,不是最简分式;=y-x,不是最简分式;是最简分式;==,不是最简分式.故选C.【题目点拨】此题主要考查了最简分式的概念,看分式的分子分母有没有能约分的公因式是解题关键.2、B【解题分析】试题分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可:A、不是因式分解,故此选错误;B、,正确;C、,不是因式分解,故此选错误;D、,不是因式分解,故此选错误.故选B.考点:因式分解的意义..3、A【解题分析】试题分析:A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬;故选A考点:一次函数的应用4、C【解题分析】设正方形草坪的原边长为a,则面积=a2;将一正方形草坪的南北方向增加3m,东西方向缩短3m后,边长为a+3,a﹣3,面积为a2﹣1.故减少1m2.故选C.5、A【分析】先将分式方程化为整式方程,再根据增根的定义求出分式方程的增根,将增根代入整式方程即可求出a的值.【题目详解】解:①∵关于x的方程有增根∴解得:x=±5将x=5代入①,得a=-10;将x=-5代入①,得a=6综上所述:a=-10或6故选A.【题目点拨】此题考查的是根据分式方程有增根,求方程中的参数,掌握分式方程的解法和增根的定义是解决此题的关键.6、B【分析】由题意根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:数据0.000000007用科学记数法表示为7×10-1.故选:B.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、C【题目详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C8、C【分析】根据三角形内角和为180°且等腰三角形的两个底角相等,再结合题中一个角是另一个角的2倍即可求解.【题目详解】解:由题意可知:设这个等腰三角形为△ABC,且,情况一:当∠B是底角时,则另一底角为∠A,且∠A=∠B=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴5∠C=180°,∴∠C=36°,∠A=∠B=72°,此时可爱角为∠A=72°,情况二:当∠C是底角,则另一底角为∠A,且∠B=2∠A=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴4∠C=180°,即∠C=45°,此时可爱角为∠A=45°,故选:C.【题目点拨】本题借助三角形内角和考查了新定义题型,关键是读懂题目意思,熟练掌握等腰三角形的两底角相等及三角形内角和为180°.9、D【解题分析】根据平面内的点与有序实数对一一对应分别对各选项进行判断.【题目详解】解:A、某影剧院排号能确定具体位置;B、新华东路号,能确定具体位置;C、北纬度,东经度,能确定具体位置;D、南偏西度不能确定具体位置;故选D.【题目点拨】本题考查了利用坐标确定位置,是基础题,明确位置的确定需要两个因素是解题的关键.10、A【分析】利用,,∠C=∠M=54°证明与全等,利用全等三角形的性质可得到答案.【题目详解】解:在与中,所以:所以B,C,D,都错误,A正确.故选A.【题目点拨】本题考查三角形全等的判定,掌握三角形全等的判定方法是关键.二、填空题(每小题3分,共24分)11、1.【分析】易证∠CAD=∠CBF,即可求证△ACD≌△BED,可得DE=CD,即可求得AE的长,即可解题.【题目详解】解:∵BF⊥AC于F,AD⊥BC于D,
∴∠CAD+∠C=90°,∠CBF+∠C=90°,
∴∠CAD=∠CBF,
∵在△ACD和△BED中,∴△ACD≌△BED,(ASA)
∴DE=CD,
∴AE=AD-DE=BD-CD=BC-CD-CD=1;
故答案为1.【题目点拨】本题考查了全等三角形的判定和性质,本题中求证△ACD≌△BED是解题的关键.12、y=x-3(答案不唯一)【分析】设这个一次函数的解析式为:y=kx+b,然后将代入可得b=-3,再根据随的增大而增大可得,k>0,最后写出一个符合以上结论的一次函数即可.【题目详解】解:设这个一次函数的解析式为:y=kx+b将代入,解得b=-3,∵随的增大而增大∴k>0∴这个一次函数可以为y=x-3故答案为:y=x-3(答案不唯一)【题目点拨】此题考查的是根据一次函数的图象所经过的点和一次函数的增减性,写出符合条件的一次函数,掌握一次函数的图象及性质与各系数的关系是解决此题的关键.13、真【分析】根据给出的命题将其结论与条件互换即得到其逆命题,然后分析其真假即可.【题目详解】解:逆命题为:如果三角形有两个角互余,则三角形为直角三角形.因为符合三角形内角和定理,故是真命题.故答案为真【题目点拨】本题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题.14、【分析】利用算术平方根及绝对值的非负性求出x、y的值,即可代入求出的平方根.【题目详解】∵,∴x-1=0,y+2=0,∴x=1,y=-2,∴=1+8=9,∴的平方根为,故答案为:.【题目点拨】此题考查算术平方根及绝对值的非负性,求一个数的平方根,能根据题意求出x、y的值是解题关键.15、a【分析】利用线段垂直平分线的性质得出AD=BD,然后根据三角形的外角的性质求得∠ADC=30°,最后由直角三角形中的30°角所对的直角边是斜边的一半可求出AC的长度.【题目详解】解:连接AD.
∵AB的垂直平分线交BC于D,交AB于E,
∴AD=BD,∴∠B=∠BAD=15°.∴∠ADC=30°,
又∠C=90°,∴AC=AD=BD=(3a-AC),∴AC=a.
故答案为:a.【题目点拨】本题考查了线段垂直平分线的性质以及含30°的直角三角形的性质,正确作出辅助线是解题的关键.16、【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【题目详解】连接BC.∵∠BDC=m°,∴∠DBC+∠DCB=180°-m°,∵∠BGC=n°,∴∠GBC+∠GCB=180°-n°,∴∠GBD+∠GCD=(180°-n°)-(180°-m°)=m°-n°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠ABD+∠ACD=2∠GBD+2∠GCD=2m°-2n°,∴∠ABC+∠ACB=2m°-2n°+180°-m°=180°+m°-2n°,∴∠A=180°-(∠ABC+∠ACB)=180°-(180°+m°-2n°)=2n°-m°,故答案为2n°-m°.【题目点拨】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.17、【分析】根据二次根式有意义的条件是被开方数大于等于0,分析原函数可得1-2x≥0,解不等式即可.【题目详解】解:根据题意得,1-2x≥0,解得:故答案为:【题目点拨】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.18、.【解题分析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.三、解答题(共66分)19、对【解题分析】试题分析:根据三角形的角平分线的性质即可判断,若动手操作则更为直观.三角形三条角平分线交于一点,本题正确.考点:角平分线的性质点评:熟练掌握基本图形的性质是学好图形问题的基础,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.20、(1)详见解析;(2)1.【解题分析】(1)只要证明DN∥BM,DM∥BN即可;(2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题.【题目详解】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四边形BMDN是平行四边形;(2)∵四边形BMDN是平行四边形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN,∴FN=EM=5,在Rt△AFN中,AN===1.【题目点拨】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、(1);(2)见解析;(3)【分析】(1)根据题意及等腰直角三角形的性质可知AF=AD=DE=4,再利用勾股定理求出AE,然后根据线段之间的关系求解即可;(2)过点A作AP⊥BF,根据角平分线、等腰三角形的性质可证明△PAG为等腰直角三角形,过点C作CQ⊥BF,利用AAS可证明△ABP≌△BCQ,再利用全等的性质及线段间的关系可证明△CQG为等腰直角三角形,最后利用等腰直角三角形边的性质可证明结论;(3)过点B作BH⊥BN交NC的延长线于点H,利用AAS可证明△ABN≌△CBH,再利用全等的性质可证明△BHN为等腰直角三角形,从而可得到答案.【题目详解】解:(1)由题可得,∴在等腰中,,∴;(2)证明:如图,过作,∵平分,且,∴,又∵,∴,,由题可得,,∴,∴,∴,即为等腰直角三角形,∴,,过作,∵,∴,在与中,,∴△ABP≌△BCQ(AAS),∴,,又∵,∴,∴,即,∴,∴为等腰直角三角形,∴,∴;(3)如图,过点B作BH⊥BN交NC的延长线于点H,∵BH⊥BN,∠ABC=90°,∴∠HBC+∠CBN=∠ABN+∠CBN,∴∠HBC=∠ABN,∵BH⊥BN,AN⊥CM,∴∠BHC+∠CNB=∠ANB+∠CBN,∴∠BHC=∠ANB,在△ABN和△CBH中,,∴△ABN≌△CBH(AAS),∴BH=BN,CH=AN,∴△BHN为等腰直角三角形,∴HN=BN,又∵HN=HC+CN=AN+CN,∴AN+CN=BN,∴.【题目点拨】本题考查了旋转的性质,等腰直角三角形的判定性质,全等三角形的判定与性质等知识,较为综合,关键在于作辅助线构造全等三角形.22、(1)证明见解析;(2)∠CMQ的大小不变且为60度;(3)t=2.【分析】(1)根据等边三角形的性质、三角形全等的判定定理证明;(2)根据全等三角形的性质得到∠BAQ=∠ACP,根据三角形的外角的性质解答;(3)分三种情况分别讨论即可求解.【题目详解】(1)根据路程=速度×时间可得:AP=BQ∵△ABC是等边三角形∴∠PAC=∠B=60°,AB=AC∴△ABQ≌△CAP(SAS)(2)∵△ABQ≌△CAP∴∠BAQ=∠ACP∴∠CMQ=∠ACM+∠MAC=∠BAQ+∠MAC=60°因此,∠CMQ的大小不变且为60度(3)当AP=AQ时,仅当P运动到B点,Q运动到C点成立,故不符合题意;当PQ=AQ时,仅当P运动到B点,Q运动到C点成立,故不符合题意;当AP=PQ时,如图,当AQ⊥BC时,AP=BP=PQ,故t=2÷1=2时,△APQ为等腰三角形;综上,当t=2时,△APQ为等腰三角形,此时AP=PQ.【题目点拨】本题考查的是全等三角形的判定、直径三角形的性质,掌握等边三角形的性质、灵活运用分情况讨论思想是解题的关键.23、详见解析【分析】由∠1=∠2,得AC=AD,进而由HL判定Rt△ABC≌Rt△AED,即可得出结论【题目详解】∵∠1=∠2∴AC=AD∵∠B=∠E=Rt∠,AB=AE∴△ABC≌△AED(HL)∴∠3=∠4考点:全等三角形的判定及性质24、(1)证明见解析(2)6【分析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)+(6-x)=25,从而求得x的值,由勾股定理得出AB的长.【题目详解】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常年杂志广告合同范本
- 《电视新闻现场报道》课件
- 工程招投标合同的履行监督
- 客运线路租赁承包合同范本
- 开管手术术后护理
- 舌癌患者护理查房心得
- 新医院员工入职培训
- 《展会策划方案文库》课件
- 科学活动有趣的水宝宝
- 古诗词诵读《李凭箜篌引》公开课一等奖创新教学设计统编版高中选择性必修中册
- 知道智慧网课《科技伦理》章节测试答案
- 2023年印刷油墨行业分析报告及未来五至十年行业发展报告
- 智力残疾送教上门教案
- 租赁合同英文版
- 教育博士学习和研究计划
- 《民航概论》 课件 第一章 民航运输业概述
- 痛风临床诊疗规范
- 2023年海南省中考数学试卷(含解析)
- 气胸、血胸病人的护理课件
- 培养青年教师方案
- 手术室外麻醉的风险
评论
0/150
提交评论