多属性决策基本理论与方法_第1页
多属性决策基本理论与方法_第2页
多属性决策基本理论与方法_第3页
多属性决策基本理论与方法_第4页
多属性决策基本理论与方法_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多属性决策基本理论与方法主讲人:张云丰多属性决策基本理论与方法多属性决策基本理论多属性决策思想根据决策空间的不同,经典的多准则决策(MultipleCriteriaDecisionMaking-MCDM)可以划分为两个重要的领域:决策空间是离散的(备选方案的个数是有限的)称为多属性决策(MultipleAttributeDecisionMaking-MADM),决策空间是连续的(备选方案的个数是无限的)称为多目标决策(MultipleObjectiveDecisionMaking-MODM)。一般认为前者是研究已知方案的评价选择问题,后者是研究未知方案的规划设计问题。经典的多属性决策(MultipleAttributeDecisionMaking-MADM)问题可以描述为:给定一组可能的备选方案,对于每个方案,都需要从若干个属性(每个属性有不同的评价标准)去对其进行综合评价。决策的目的就是要从这一组备选方案中找到一个使决策者感到最满意的方案,或者对这一组方案进行综合评价排序,且排序结果能够反映决策者的意图。多属性决策是现代决策科学的一个重要组成部分,它的理论和方法广泛应用于社会、经济、管理和军事等诸多领域,如投资决策、项目评估、工厂选址、投标招标、人员考评、武器系统性能评定、经济效益综合排序等。多属性问题描述设在一个多属性决策问题中,备选方案集合为G={g,g,…,g},考虑的评价属性集合12 m为U={u,u,…,u},则初始多属性决策问题的决策矩阵为:12nx11x12x1nX-x12:x22x2nxm1xm2xmn其中,%表示第i个方案的第j个属性的初始决策指标值,其值可以是确定值,也可以是模ij糊值,既可以是定量的也可以是定性的。多属性决策问题主要包括三个部分:建立属性评价体系、确定属性权重及运用具体评价方法对备选方案进行综合评价。属性值规范化方法属性值规范化概述常见的属性有效益型、成本性、区间型三种。效益型属性也称正属性,是指属性值越大

隶属度越大的属性,也就是说属性值越大越好。成本型属性也称负属性,是指属性值越小隶属度越大的属性,也就是说属性值越小越好。区间型属性也称适度型属性,是指属性值越接近某个常数隶属度越大的属性。属性之间一般存在着不可共度量性,即不同属性有不同的度量标准。具体来说,各属性的度量单位不同、量纲不同、数量级不同。我们不能直接利用初始属性指标进行各方案的综合评价和排序,而是需要先消除各属性的量纲、数量级和属性类型的影响后,再对方案进行综合评价和排序。消除各属性的量纲、数量级和属性类型的差异的过程,这就是我们常说的决策指标的规范化处理(或称为决策指标的标准化处理)。对于多属性决策问题,其实质就是利用一定的数学变换,把属性的量纲、类型、差异消除,从而,将其转化成可以进行比较和综合处理的、统一的“无量纲化”指标。对于多属性决策问题,一般习惯上是把各属性的指标值都统一转换到[0,1]区间上。即决策指标规化以后,对每个属性来讲,最差的属性指标值为0,最好的属性指标值为1。确定型属性值规范化方法线性变换法对于效益型属性:对于成本型属性:其中,%片V_Y.maxyij-xij/xj对于成本型属性:其中,%片V_Y.maxyij-xij/xjminyij=xjXjmin=max{xij,x2j,…,xmj},xj =min{xij,x2j,…,xmj}。式2.1、式2.2也可以分别表示为:yij=1一(%m1nxij)线性变换法只适用于效益型属性和成本性属性,且指标值均为正值的情况。其规范化后的指标值分别落在[(x,叮xm"),1]、[(xmin/xmx)j]区间上。其中,式2.3、式2.4并不是线性的变换,只是习惯上也称其为线性变换法。极差变换法极差变换法的基本思想是将最好的属性值规范化后为1,将最差的属性值规范化后为0,其余的属性值均用线性插值法得到规范化属性值。对于效益型属性:

对于成本型属性:对于区间型属性:1-max{(q11-xyij=yij=xijminjmaxj-xminjxjmaxxjmax-x对于成本型属性:对于区间型属性:1-max{(q11-xyij=yij=xijminjmaxj-xminjxjmaxxjmax-xminjij),(xij-q12)}max{(q11-xmjin),(xmjaxxij史[q1,q2]11xij£[qi,q2]其中,xmx=max{x1j,x2j,…,xmj},xmn=min{xij,x2j,…,xmj}。(3)向量变换法对于效益型属性:yij=xijm9i11x2对于成本型属性:(2.9)(i/x(2.9)y=_ ―m'm?jA(1/xij)2

i=1我们注意到,向量规范化方法并不改变初始属性的正、负符号,且规范化后各分量的模等于1,即(x1j,x2j,…,xmji=j.A1(xij)2=1

i=i这种规范化方法适用于任何类型的属性,但是其不能保证属性的最好值规范化后的值为1、最差值为0,也不能保证属性值规范化后的值落在[0,1]区间上。所以这种方法的应用范围仅仅局限于基于空间距离方法的多属性决策方法,如理想点法、TOPSIS法、投影法、夹角度量法等。三角函数变换法对于效益型属性:_1,1._1,1.ry万——+—sin]一ij22maxxjmin-Xjmaxminxj +xjj 2j)]乙(2.10)对于成本型属性:_11.「y_11.「y万二 sin[ ij22maxxjmin~xjmaxminxmjax+xmjnj2j)]乙(2.11)模糊型属性值规范化方法对于定性刻画的控制变量,考虑到信息的不完全性及风险诊断专家知识的局限等,往往很难用精确数表示其原始信息,而模糊语言有时候更利于风险诊断专家表达自己的偏好。模糊语言的表示主要有区间数、三角模糊数、梯形模糊数、直觉模糊数、语言标度、二元语义等。在决策过程中,虽然选择不同的模糊语言表示及集结方法将会得到不同的结果,但就各种模糊语言表示本身而言并没有优劣之分。定义1记a=[aL,au]为闭区间数,应用 算子,则转化的计算公式为:f([al,au])=(1一九)al十九aup定义2记~=(aL,aM,au)为三角模糊数,应用 算子,则转化的计算公式为:f((aL,am,au))=((1一九)aL+2aM+九au)/3p定义3记b=(bL,bM,bN,bu)为梯形模糊数,应用 算子,则转化的计算公式为:f((bL,bm,bN,bu))=((1一九)(aL+2aM)+九(2aN+au))/3p定义4记¥={甲|ae[-L,L];LeZ}为模糊语言标度集,甲表示模糊语言变量。甲,和W,分a a -L L别表示模糊语言标度集的下限标度和上限标度。若y=[v ,WWrC+且a<B,称Y为apa'。模糊语言区间数。当a=p时,y退化为模糊语言变量。集合+中元素数量可根据实际评估需要设置。若取 L=4,则集合+包括9个元素。在刻画供应链风险时,给定模糊语言变量与风险诊断专家表达的模糊偏好信息存在如下对应关系:W,=VL(很低),Wa=L(低),v,=ML(较低),W1=FL(稍低),Wn=IG(一般),W1=FH(稍-4 -3 -2 -1 0 1高),W2=MH(较高),W3=H(高),W4=VH(很高)。由于模糊语言区间数不能直接计算,因此需要通过转换公式将之转化后方可进行。通过定义5可实现模糊语言区间数与精确数之间的转化。

定义5记Y=WaWp]为模糊语言区间数,0为精确数,其中a,Pe[-L,L],0<0<1。存在下列对应法则使得映射关系f:此唧]}一0成立。0=…).a+L+1+QP+L+1 (2)2L+1 2L+1其中,九表示风险诊断专家对风险程度的偏好。若九二0,说明风险诊断专家对风险持乐观态度;若九二1时,说明风险诊断专家对风险持悲观态度。0可理解为风险系数,0越小,说明风险程度越低。建立属性评价体系属性权重计算方法判断矩阵法见5.3层次分析法灰色关联系数法灰色关联度评价是一种多因素统计分析方法,它是以各因素(属性)的样本数据为依据用灰色关联度来描述方案之间关系的强弱、大小和次序。如果样本数据间变化态势基本一致,则关联度较大;反之较小。灰色关联度评价法的核心是计算关联系数,而关联系数的计算实质就是一种利用理想样本(方案)进行确定型定量指标的规范化方法。首先,确定所研究问题的评价指标和被评价方案,形成如下样本初始决策矩阵:-%11x12••x1nX=(x) =ij mxn'21x22: •x2n•• :,-xm1xm2••xmn将指标进行无量纲化处理,并确定参考样本(理想方案),得到规范化决策矩阵:-y01y02 …y0ny11y12 …y1nY=(yij)mxn=y21y22 …y2n:,yL,m1ym2 …ymn其中,j0j=max{y1j,%j,…,ymj},j=1,2,…,n。第i个方案的第j个指标与参考样本理想方案)的关联系数为r

ijyminminyiij+pmaxmaxyr

ijyminminyiij+pmaxmaxy.n i j +pmaxmaxy其中,p是分辨系数,在[0,1]内取值,一般取0.5,其取较小值可以提高关联系数间差异的显著性,从而提高评价结果的区分能力,这也正是灰色关联度评价法的一个显著特点。若指标的权重向量为3=(%,32,…,3,),则被评价方案与参考样本(理想方案)的关联度为R=£3r,i=1,2,…,mi jijj=1按照关联度大小排序各被评价方案。对被评价方案与参考样本的关联度从大到小排序,关联度越大,说明被评价方案与参考样本越接近,因而被评价方案也就越优。熵权法熵权法概述熵原本是一热力学概念,它最先由申农9.E.Shannon)引入信息论,称之为信息熵。现已在工程技术,社会经济等领域得到十分广泛的应用。申农定义的信息熵是一个独立于热力学熵的概念,但具有热力学熵的基本性质(单值性、可加性和极值性),并且具有更为广泛和普遍的意义,所以称为广义熵。它是熵概念和熵理论在非热力学领域泛化应用的一个基本概念。熵权法是一种客观赋权方法。在具体使用过程中,熵权法根据各属性的变异程度,利用信息熵计算出各属性的熵权,再通过熵权对各属性的权重进行修正,从而得出较为客观的属性权重。熵权法基本原理根据信息论的基本原理,信息是系统有序程度的一个度量;而熵是系统无序程度的一个度量。若系统可能处于多种不同的状态。而每种状态出现的概率为pi(i=1,2,…,m)时,则该系统的熵就定义为:丁e=一乙Pi-lnPii=1显然,当pi=1/m(i=1,2,…,m)时,即各种状态出现的概率相同时,熵取最大值,为emaxemax=lnm。现有m个备选方案,n个评价属性,形成初始评价矩阵R=(r.)x,对于某个属性々有信ijm-xn j息熵:mmej“乙pij,ln%,其中pij=rij/乙i=1i=i=1从信息熵的公式可以看出:如果某个属性的熵值“越小,说明其属性值的变异程度越大,提供的信息量越多,在综合评价中该属性起的作用越大,其权重应该越大。如果某个属性的熵值“越大,说明其属性值的变异程度越小,提供的信息量越少,在综合评价中起的作用越小,其权重也应越小。故在具体应用时,可根据各属性值的变异程度,利用熵来计算各属性的熵权,利用各属性的熵权对所有的属性进行加权,从而得出较为客观的评价结果。4.3.3熵权法计算权重步骤熵权法计算各属性权重的过程为:(1)计算第j个指标下第i个备选方法的属性值的比重p一:ij丁p..=r./乙r.ijijiji=1⑵计算第j个指标的熵值ej:其中k=其中k=1/lnme.=一k乙p..・lnp..,j ijiji=1⑶计算第j个指标的熵权3j:n3j=(1-ej)/乙(1-ej)j=1当各备选方案在属性j上的值完全相同时,该属性的熵达到最大值1,其熵权为零。这说明该属性未能向决策者供有用的信息,即在该属性下,所有的备选方案对决策者说是无差异的,可考虑去掉该属性。因此,熵权本身并不是表示属性的重要性系数,而是表示在该属性下对评价对象的区分度。熵权法可用于任何评价问题中的属性权重确定并可用于剔除属性评价体系中对评价结果贡献不大的属性。4.4离差最大化方法对于某一多属性决策问题,属性权重信息完全未知。初始决策矩X=(%..)经过规范化ij mxn处理后,得到规范化矩阵y=(J..)。假设属性权重向量为3=(3,3,,…,3),3>0,并ijmxn 1 2nj满足单位化约束条件:y032=1。jj=1

由于客观事物的不确定性和人类思维的模糊性,决策专家们往往很难给出明确的属性权重值,甚至出现属性权重信息完全未知的情形。因此,通过属性值自身所体现出的特点来决定属性权重的比例是客观的和合乎逻辑的,基于离差最大化的属性赋权方法则具备这样的优点。它的基本思想是,若所有方案在某个属性下的属性值差异越小,则说明该属性值对方案决策与排序所起的作用越小;反之,若某个属性能使所有方案的属性值有较大差异,则说明其对方案决策与排序将起重要作用。由此,从对决策方案进行排序的角度考虑,无论方案属性本身的重要程度如何,方案属性值离差越大的属性应该赋予越大的权重。特别地,若所有方案在某个属性下的属性值无差异,则该属性对方案排序将不起作用,可令其权重为0。基于上述考虑,对于属性u.,用D..(3)表示方案g.与其他所有方案之间的离差,则可定jij i义mDij(3)=Zyij3j-ykj3j。

k=1

mmDj(3)=ZDjj(3)=ZZi=1i=1k=1则D.(3)表示对属性u而言,所有方案与其他方案的总离差。根据上述分析,属性权重jj向量3的选择应使所有属性对所有方案的总离差最大。为此,构造目标函数为nmmmaxD(3)=ZDj(3)=ZZZj=1 j=1i=1k=1于是,求解属性权重向量3等价于求解如下最优化模型yjj-yjj-ykj3jmaxD(P)=ZZZ

j=1i=1k=1ns.t. Z3j2=13j>0j=1nmLnmL(3,入)=ZZ1」n2八yij~ykj3j+2"(Z3j—1),

j=1求其偏导数,并令mmammal/。3j=工工i=ik=iyij-ykj求得最优解mm

zzi=1mm

zzi=1j=1yij-ykjjnnmm■z[zz\j=1i=1j=1yij-ykj,]2由于传统的加权向量一般都满足归一化约束条件而不是单位化约束条件,因此在得到单位化权重向量3*之后,为了与人们的习惯用法相一致,还可以对3*进行归一化处理,即令n/(z3*j)j=1由此得到yij-ykjnmmjz1iZ1iZ1yj-小5多属性决策基本方法TOPSIS方法TOPSIS方法的英文全称是“TechniqueforOrderPreferencebySimilarutytoIdeal501a10成”,即逼近于理想解的排序方法,是Hwang和Yoon于1981年提出的一种适用于根据多项指标、对多方案进行比较选择的分析方法。这种方法的中心思想在于首先确定各项指标的正理想解和负理想解,所谓正理想解是某一指标的最优值,而负理想解是某一指标的最劣值,所有的正理想解构成最优方案,所有的负理想解构成最劣方案,然后求出各个方案与最优方案及最劣方案之间的加权欧氏距离,由此得出各方案与最优方案(最劣方案)的接近程度,作为评价方案优劣的标准。运用TOPSIS方法进行多指标多方案评价的基本步骤如下:Step1决策专家对m个方案n个指标给出决策矩阵X=(%..);ijmxnStep2对决策矩阵原始数据按下列方法进行归一化,得到y=(y..);ijmxn,、.,一 %max-X..成本性指标: r.=——j ij—,(i=1,2,..m;j=1,2,..n)ij Xmax-XminjjX-Xmin效益型指标: r.=—i j ,(i=1,2,..m;j=1,2,..n)ij Xmax-Xminjj其中Xmax表示第j个指标的最大值,Xmin表示第j个指标的最小值。jjStep3将指标权重与R进行加权集结,得到加权决策矩阵Z=(z)ijmxnStep4由各项指标的最优值和最劣值分别构成最优方案和最劣方案:Z+=(z+,z+…z才),Z-=(z-,z-,...,z-),

12n 12n其中z+=max{z,z,...,z},z-=min{z,z,...,z},j=1,2,..n;j 1j2jmj j 1j2jmjStep5计算各方案与最优方案和最劣方案之间的距离,计算公式如下:L+=[^^(z—z+)2]1/2,L-=[^^(z—z-)2]1/2;i ijj i ijjj=1 j=1Step6利用公式C=L-/(L++L-),i=1,2,..m得到各方案的相对接近度;iiiiStep7按相对接近度大小对方案排序,相对接近度越大说明该方案越优。模糊综合评价法层次分析法灰色关联度法案例:现欲在A、B、C三家承运商中选择一家作为合作伙伴,重点考虑的评价指标有3个,其中指标1为效益型,指标2为成本型,指标3为区间型且最佳值为[60,65],三家承运商的各项指标评价值如下表所示:承运商/指标指标1指标2指标3A9317070B8814565C8312063

若假定上述3个指标的权重分别为0.4、0.4、0.2,请运用TOPSIS方法给予评价定义3若3k=(3k,3k,…,3k)表示第k个决策者赋予的指标权重向量,31=(31,31,…,31)表示第12n 12nt个决策者赋予的指标权重向量,则3k与31之间的一致性程度为:L=(L=(3k・3t)/(3k・3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论