2022年广东省深圳市蛇口科爱赛国际学校高二数学文下学期期末试题含解析_第1页
2022年广东省深圳市蛇口科爱赛国际学校高二数学文下学期期末试题含解析_第2页
2022年广东省深圳市蛇口科爱赛国际学校高二数学文下学期期末试题含解析_第3页
2022年广东省深圳市蛇口科爱赛国际学校高二数学文下学期期末试题含解析_第4页
2022年广东省深圳市蛇口科爱赛国际学校高二数学文下学期期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年广东省深圳市蛇口科爱赛国际学校高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数y=f(x)导函数f'(x)的图象如图所示,则下列说法正确的是()A.函数y=f(x)在(﹣∞,0)上单调递增B.函数y=f(x)的递减区间为(3,5)C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值参考答案:D【考点】利用导数研究函数的单调性.【分析】利用导数与函数单调性的关系以及函数在某点取得极值的条件即可判断.【解答】解:由函数y=f(x)导函数的图象可知:当x<﹣1及3<x<5时,f′(x)<0,f(x)单调递减;当﹣1<x<3及x>5时,f′(x)>0,f(x)单调递增.所以f(x)的单调减区间为(﹣∞,﹣1),(3,5);单调增区间为(﹣1,3),(5,+∞),f(x)在x=﹣1,5取得极小值,在x=3处取得极大值.故选D.2.若,则函数的最小值为(

)A

B

C

D

非上述情况参考答案:B略3.在等差数列中,,则此数列的前13项之和等于(

)

A.13

B.26

C.52

D.156参考答案:B4.某班一天上午安排语、数、外、体四门课,其中体育课不能排在第一、第四节,则不同排法的种数为()A.24 B.22 C.20 D.12参考答案:D【考点】D9:排列、组合及简单计数问题.【分析】因为体育课不能排在第一、第四节,所以先排体育课,可以排第三、四节,有2种排法,再排语、数、外三门课,有A33种排法,由此能求出不同排法的种数.【解答】解:先排体育课,有2种排法,再排语、数、外三门课,有A33种排法,按乘法原理,不同排法的种数为2×A33=12.故选D.5.下面为一个求20个数的平均数的程序,在横线上应填充的语句为(

)A.i>20

B.i<20

C.i>=20

D.i<=20参考答案:A6.执行如图所示程序框图,若使输出的结果不大于100,则输入的整数k的最大值为()A.4 B.5 C.6 D.7参考答案:B【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量S的值,并输出满足退出循环条件时的k值,模拟程序的运行,对程序运行过程中各变量的值进行分析,即可得解.【解答】解:模拟执行程序框图,可得S=0,n=0满足条,0≤k,S=3,n=1满足条件1≤k,S=7,n=2满足条件2≤k,S=13,n=3满足条件3≤k,S=23,n=4满足条件4≤k,S=41,n=5满足条件5≤k,S=75,n=6满足条件6≤k,S=141,n=7…若使输出的结果S不大于100,则输入的整数k不满足条件6≤k,即5≤k<6,则输入的整数k的最大值为5.故选:B.7.在的展开式中,的系数为(

)A.-10

B.20

C.-40

D.50参考答案:C8.下列有关命题的说法错误的是()A.命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p、q均为假命题D.对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0参考答案:C【考点】命题的真假判断与应用;四种命题间的逆否关系;必要条件、充分条件与充要条件的判断.【专题】综合题.【分析】根据四种命题的定义,我们可以判断A的真假;根据充要条件的定义,我们可以判断B的真假;根据复合命题的真值表,我们可以判断C的真假;根据特称命题的否定方法,我们可以判断D的真假,进而得到答案.【解答】解:命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”故A为真命题;“x=1”是“x2﹣3x+2=0”的充分不必要条件.故B为真命题;若p∧q为假命题,则p、q存在至少一个假命题,但p、q不一定均为假命题,故C为假命题;命题p:?x∈R,使得x2+x+1<0.则非p:?x∈R,均有x2+x+1≥0,故D为真命题;故选C.【点评】本题考查的知识点是命题的真假判断与应用,四种命题间的逆否关系,充要条件,是对简单逻辑综合的考查,属于简单题型.9.命题“?x∈R,?n∈N*,使得n≥x2”的否定形式是()A.?x∈R,?n∈N*,使得n<x2 B.?x∈R,?n∈N*,使得n<x2C.?x∈R,?n∈N*,使得n<x2 D.?x∈R,?n∈N*,使得n<x2参考答案:D【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“?x∈R,?n∈N*,使得n≥x2”的否定形式是:?x∈R,?n∈N*,使得n<x2.故选:D.10.一个几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.参考答案:C【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得该几何体是一个以俯视图为底面的四棱锥,求出各个面的面积,相加可得答案.【解答】解:由已知中的三视图可得该几何体是一个以俯视图为底面的四棱锥,其底面是边长为1m的正方形,故底面积为1m2,侧面均为直角三角形,其中有两个是腰为1m的等腰直角三角形,面积均为:m2,另外两个是边长分别为1m,m,m的直角三角形,面积均为:m2,故几何体的表面积S=,故选:C二、填空题:本大题共7小题,每小题4分,共28分11.曲线在点A(0,1)处的切线斜率为______________。参考答案:112.已知,若在上恒成立,则实数的取值范围是

.参考答案:略13.一个样本容量为的样本数据,它们组成一个公差不为0的等差数列,若,且成等比数列,则此样本的中位数是_________.参考答案:1014.空间四边形OABC中,,,,点M在OA上,且OM=2MA,N为BC的中点,则_________

(用,,表示)参考答案:略15.已知函数.若函数有两个零点,则实数k的取值范围是_____.参考答案:【分析】由题意画出两个函数的图象,由临界值求实数k的取值范围.【详解】函数有两个零点即与有两个交点,的图像如图所示:当的斜率时由图像可得有两个交点,故实数的取值范围是故答案为【点睛】本题考查了方程的根与函数的交点的关系,同时考查了函数的图象的应用,属于中档题.16.用2、3、5、7组成没有重复数字的四位数,再将这些四位数按从小到大排成一个数列,则这个数列的第18项是___

____.(填写这个四位数)参考答案:5732略17.有4名学生插班到4个班级,每班1人,则不同的插班方案有__________种.

参考答案:24三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.若不等式对一切恒成立,试确定实数的取值范围.参考答案:当时,原不等式变形为,恒成立,即满足条件;

当时,要使不等式对一切恒成立,必须

,解得,.综上所述,的取值范围是.略19.现有一张长80厘米、宽60厘米的长方形ABCD铁皮,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为l00%,不考虑焊接处损失.方案一:如图(1),从右侧两个角上剪下两个小正方形,焊接到左侧中闻,沿虚线折起,求此时铁皮盒的体积;方案二:如图(2),若从长方形ABCD的一个角上剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,求该铁皮盒体积的最大值,并说明如何剪拼?.参考答案:考点:导数在最大值、最小值问题中的应用;函数模型的选择与应用.专题:函数的性质及应用;导数的综合应用.分析:方案一:求出小正方形的边长,利用体积公式可求体积;方案二:设底面正方形的边长为x(0<x<60),长方体的高为y,利用面积确定x,y之间的关系,进而可表示出体积,利用导数法,可求最值.解答:方案一:设小正方形的边长为x,由题意得4x=60,x=15,所以铁皮盒的体积为65×30×15=29250(cm3).…(4分)方案二:设底面正方形的边长为x(0<x<60),长方体的高为y,由题意得x2+4xy=4800,即,所以铁皮盒体积,…(10分),令V′(x)=0,解得x=40或x=﹣40(舍),当x∈(0,40)时,V'(x)>0;当x∈(40,60)时,V'(x)<0,所以函数V(x)在x=40时取得最大值32000cm3.将余下材料剪拼成四个长40cm,宽20cm的小长方形作为正方形铁皮盒的侧面即可.

…(15分)答:方案一铁皮盒的体积为29250cm3;方案二铁皮盒体积的最大值为32000cm3,将余下材料剪拼成四个长40cm,宽20cm的小长方形作为正方形铁皮盒的侧面即可.(16分)点评:本题考查函数模型的选择与运用,考查几何体的体积,考查导数知识的运用,属于中档题.20.(本小题满分12分)已知方程是关于的一元二次方程.(Ⅰ)若是从0,1,2,3四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实数根的概率;(Ⅱ)若分别是区间是内的随机数,求上述方程有实数根的概率.参考答案:设事件为“方程有实数根”.当,时,方程有实数根的充要条件为.………………2分 (Ⅰ)基本事件共12个:,,,.其中第一个数表示的取值,第二个数表示的取值.……………3分事件中包含9个基本事件.……………(4分)事件发生的概率为.……………(6分)(Ⅱ)试验的全部结果所构成的区域为.构成事件的区域为.………(8分)所以所求的概率.……………(12分)21.(本小题满分14分)已知函数.

(Ⅰ)若曲线过点,求曲线在点处的切线方程;

(Ⅱ)求函数在区间上的最大值;

(Ⅲ)若函数有两个不同的零点,求证:.参考答案:(Ⅰ)因为点在曲线上,所以,解得.因为,所以切线的斜率为,所以切线方程为.

…4分(Ⅱ)因为.①当时,,,所以函数在上单调递增,则.②当,即时,,,,所以函数在上单调递增,则.

③当,即时,函数在上单调递增,在上单调递减,则.

……7分④当,即时,,,函数在上单调递减,则.

………9分综上,①当时,;②当时,;③当时,.

…………10分(3)不妨设.因为,所以,,可得,.要证明,即证明,也就是.因为,所以即证明,即.

…………12分令,则,于是.令(),则.故函数在上是增函数,所以,即成立.所以原不等式成立.

…14分22.已知双曲线的离心率,过A(a,0),B(0,﹣b)的直线到原点的距离是.(1)求双曲线的方程;(2)已知直线y=kx+5(k≠0)交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.参考答案:【考点】直线与圆锥曲线的关系;双曲线的标准方程.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(1)由离心率为可得①,原点到直线AB的距离是,得=②,由①②及c2=a2+b2可求得b,a;(2)把y=kx+5代入x2﹣3y2=3中消去y,得x的二次方程,设C(x1,y1),D(x2,y2),CD的中点是E(x0,y0),由C,D都在以B为圆心的圆上,得k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论