2022年山西省晋中市使赵中学高二数学文月考试卷含解析_第1页
2022年山西省晋中市使赵中学高二数学文月考试卷含解析_第2页
2022年山西省晋中市使赵中学高二数学文月考试卷含解析_第3页
2022年山西省晋中市使赵中学高二数学文月考试卷含解析_第4页
2022年山西省晋中市使赵中学高二数学文月考试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山西省晋中市使赵中学高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列曲线中离心率为的是(

A.

B.

C.

D.参考答案:C2.平面区域如图所示,若使目标函数取得最大值的最优解有无穷多个,则的值是(

A

B

C1

D4

参考答案:B3.教育部选派3名中文教师到外国任教中文,有4个国家可供选择,每名教师随机选择一个国家,则恰有2名教师选择同一个国家的概率为(

)A. B. C. D.参考答案:C【分析】先求出3名教师去4个国家的总的可能性,再求2名教师选择同一国家的可能性,代入公式,即可求解。【详解】3名教师每人有4种选择,共有种可能。恰有2人选择同一国家共有种可能,则所求概率,故选C【点睛】本题考查计数原理及组合问题,考查学生分析推理,计算化简的能力,属基础题。

4.抛物线的准线方程是(

)

A.

B.

C.

D.参考答案:D5.已知等差数列{an}的公差d≠0,若a5、a9、a15成等比数列,那么等于()A. B. C. D.参考答案:A【考点】等比数列的性质;等差数列的通项公式.【分析】先利用等差数列的通项公式,用a1和d分别表示出等差数列的第5、9、15项,进而利用等比数列的性质建立等式,求得a1和d的关系,进而再利用等差数列的通项公式化简,将求出的a1和d的关系代入,合并约分后即可求出所求式子的值.【解答】解:∵a5,a9,a15成等比数列,∴a92=a5?a15,即(a1+8d)2=(a1+4d)(a1+14d),整理得:2a1d=8d2,由d≠0,解得:4d=a1,∴===.故选A6.已知等比数列{an}满足,,则(

)A.21 B.42 C.63 D.84参考答案:B由a1+a3+a5=21得a3+a5+a7=,选B.7.若函数y=是定义在R上的偶函数,在(-∞,0]上是减函数,且,则使<0的x的取值范围是(

)A.(-∞,-2)

B.(2,+∞)

C.(-∞,-2)∪(2,+∞)

D.(-2,2)参考答案:D略8.某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y(单位:千瓦·时)与气温x(单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了以下对照表:x(单位:℃)171410-1y(单位:千瓦·时)24343864由表中数据得线性回归方程:,则由此估计:当某天气温为2℃时,当天用电量约为(

)A.56千瓦·时 B.62千瓦·时C.64千瓦·时 D.68千瓦·时参考答案:A【分析】根据回归直线方程经过样本中心点,求得,代入回归直线可求得;代入回归方程后,可预报当气温为℃时,当天的用电量。【详解】代入回归直线方程,求得所以回归直线方程为当温度为2℃时,代入求得千瓦·时所以选A【点睛】本题考查了回归方程的简单应用,注意回归直线方程一定经过样本的中心点,而不是样本的某个点,属于基础题。9.各项为正数的等比数列的公比,且成等差数列,则的值是

(

)

A.

B.

C.

D.或

参考答案:B10.直线是常数)与圆的位置关系是(

)A.相交

B相切

C相离

D视的大小而定参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.在正三棱柱ABC﹣A1B1C1中,若,则AB1与C1B所成的角的大小为

.参考答案:900 ()12.某院校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在甲专业抽取的学生人数为

人。参考答案:613.已知正△ABC的边长为1,那么在斜二侧画法中它的直观图△A′B′C′的面积为

.参考答案:【考点】斜二测法画直观图.【专题】数形结合;定义法;空间位置关系与距离.【分析】由直观图和原图的面积之间的关系,直接求解即可.【解答】解:正三角形的高OA=,底BC=1,在斜二侧画法中,B′C′=BC=1,0′A′==,则△A′B′C′的高A′D′=0′A′sin45°=×=,则△A′B′C′的面积为S=×1×=,故答案为:.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查14.已知P是△ABC所在平面内一点,,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是

.参考答案:【考点】几何概型.【分析】根据向量加法的平行四边形法则,结合共线向量充要条件,得点P是△ABC边BC上的中线AO的中点.再根据几何概型公式,将△PBC的面积与△ABC的面积相除可得本题的答案.【解答】解:以PB、PC为邻边作平行四边形PBDC,则,∵,∴,得:,由此可得,P是△ABC边BC上的中线AO的中点,点P到BC的距离等于A到BC的距离的.∴S△PBC=S△ABC.将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为P==故答案为:【点评】本题给出点P满足的条件,求P点落在△PBC内的概率,着重考查了平面向量加法法则、向量共线的充要条件和几何概型等知识,属于基础题.15.(1)已知直线,则该直线过定点

;(2)已知双曲线

的一条渐近线方程为,则双曲线的离心率为

.参考答案:(-2,1);;16.在等差数列{an}中,若mp+np=mk+nt(m,n,p,q,k,t∈N*),则map+naq=mak+nat;类比以上结论,在等比数列{bn}中,若mp+nq=mk+nt(m,n,p,q,k,t∈N*),则

.参考答案:map?naq=mak?nat结合等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此等比数列类比到等差数列的:若m+n=p+q(m,n,p,q∈N*),则am?an=ap?aq.解:类比上述性质,在等比数列{an}中,若mp+nq=mk+nt(m,n,p,q,k,t∈N*),则map?naq=mak?nat,故答案为:map?naq=mak?nat.17.用数学归纳法证明时,由到,等式左端应增加的式子为________________.参考答案:【分析】写出时,等式左边的表达式,然后写出时,等式左边的表达式,由此判断出等式左端增加的式子.【详解】当时,左边,当时,左边,所以不等式左端应增加式子为.【点睛】本小题主要考查数学归纳法,考查观察与分析的能力,考查化归与转化的数学思想方法,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在中,角A,B,C分别所对的边为,且,的面积为.(Ⅰ)求角C的大小;

(Ⅱ)若,求边长.参考答案:略19.已知数列{an}满足:a1=3,an=an﹣1+2n﹣1(n≥2,n∈N*).(Ⅰ)求数列{an}的通项;(Ⅱ)若bn=n(an﹣1)(n∈N*),求数列{bn}的前n项和Sn;(Ⅲ)设cn=,Tn=2c1+22c2+…+2ncn(n∈N*),求证:Tn<(n∈N*).参考答案:【考点】数列的求和;数列递推式.【专题】综合题;转化思想;数学模型法;等差数列与等比数列.【分析】(I)利用“累加求和”即可得出;(Ⅱ)由(Ⅰ)及题设知:,利用“错位相减法”与等比数列的前n项和公式即可得出;(III)利用“裂项求和”即可得出.【解答】(I)解:∵,∴当n≥2时,an=a1+(a2﹣a1)+(a3﹣a2)+…+(an﹣1﹣an﹣2)+(an﹣an﹣1)=;又,故.(Ⅱ)解:由(Ⅰ)及题设知:,∴∴∴.(Ⅲ)证明:由(Ⅰ)及题设知:,∴,∴即

,∴.【点评】本题考查了“累加求和”方法、“错位相减法”、等比数列的前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.20.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)内的产品视为合格品,否则为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.表1:设备改造后样本的频数分布表质量指标值[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)频数4369628324

(1)完成下面的2×2列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;

设备改造前设备改造后合计合格品

不合格品

合计

(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3)根据市场调查,设备改造后,每生产一件合格品企业可获利180元,一件不合格品亏损100元,用频率估计概率,则生产1000件产品企业大约能获利多少元?0.1500.1000.0500.0250.0102.0722.7063.8415.0246.635附:参考答案:(1)根据图1和表1得到列联表:

设备改造前设备改造后合计合格品172192364不合格品28836合计200200400 3分将列联表中的数据代入公式计算得:. 5分因为, 所以有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关. 6分(2)根据图1和表1可知,设备改造后产品为合格品的概率约为,设备改造前产品为合格品的概率约为;即设备改造后合格率更高,因此,设备改造后性能更好. 9分

(3)用频率估计概率,1000件产品中大约有960件合格品,40件不合格品,

,所以该企业大约获利168800元. 12分21.(本小题满分12分)已知函数f(x)=,g(x)=lnx.(Ⅰ)如果函数y=f(x)在区间[1,+∞)上是单调函数,求a的取值范围;(Ⅱ)是否存在正实数a,使得函数T(x)=-+(2a+1)在区间(,e)内有两个不同的零点(e=2.71828……是自然对数的底数)?若存在,请求出a的取值范围;若不存在,请说明理由.参考答案:(1)当时,在上是单调增函数,符合题意.当时,的对称轴方程为,由于在上是单调函数,所以,解得或,综上,的取值范围是,或.

……………4分(2),因在区间()内有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论