版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市岳麓区湖南师范大学附中2024届高一数学第一学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数且在上既是奇函数又是增函数,则的图象是A. B.C. D.2.已知集合A={0,1},B={-1,0},则A∩B=()A.0, B.C. D.3.为了得到函数的图象,可以将函数的图象()A.沿轴向左平移个单位 B.沿轴向右平移个单位C.沿轴向左平移个单位 D.沿轴向右平移个单位4.如图,的斜二测直观图为等腰,其中,则原的面积为()A.2 B.4C. D.5.将函数图象向左平移个单位,所得函数图象的一条对称轴的方程是A. B.C. D.6.给出下列四个命题:①若,则对任意的非零向量,都有②若,,则③若,,则④对任意向量都有其中正确的命题个数是()A.3 B.2C.1 D.07.若函数是定义在上的偶函数,则()A.1 B.3C.5 D.78.设,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知定义在R上偶函数fx满足下列条件:①fx是周期为2的周期函数;②当x∈0,1时,fx=A12 B.1C.-1410.已知,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=cos的图象向右平移个单位长度,得到函数的图象,则函数的解析式为_______,函数的值域是________12.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.13.计算的值为__________14.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).15.某工厂生产的产品中有正品和次品,其中正品重/个,次品重/个.现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品.将这10袋产品从1~10编号,从第i号袋中取出i个产品,则共抽出______个产品;将取出的产品一起称重,称出其重量,则次品袋的编号为______.16.函数fx的定义域为D,给出下列两个条件:①f1=0;②任取x1,x2∈D且x1≠三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.空气质量指数是定量描述空气质量状况的指数,空气质量指数的值越高,就代表空气污染越严重,其分级如下表:空气质量指数空气质量类别优良轻度污染中度污染重度污染严重污染现分别从甲、乙两个城市月份监测的空气质量指数的数据中随机抽取天的数据,记录如下:甲乙(1)估计甲城市月份某一天空气质量类别为良的概率;(2)分别从甲、乙两个城市的统计数据中任取一个,求这两个数据对应的空气质量类别都为轻度污染的概率;(3)记甲城市这天空气质量指数的方差为.从甲城市月份空气质量指数的数据中再随机抽取一个记为,若,与原有的天的数据构成新样本的方差记为;若,与原有的天的数据构成新样本的方差记为,试比较、、的大小.(结论不要求证明)18.已知函数为奇函数(1)求的值;(2)当时,关于的方程有零点,求实数的取值范围19.已知函数.若函数在区间上的最大值为,最小值为.(1)求函数的解析式;(2)求出在上的单调递增区间.20.已知,是方程的两根.(1)求实数的值;(2)求的值;(3)求的值.21.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边在直线上.(1)求的值;(2)求值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据题意先得到,,判断其单调性,进而可求出结果.【题目详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【题目点拨】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.2、B【解题分析】利用交集定义直接求解【题目详解】解:∵集合A={0,1},B={-1,0},∴A∩B={0}故选B【题目点拨】本题考查交集的求法,考查交集定义,是基础题3、C【解题分析】利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【题目详解】,将函数的图象沿轴向左平移个单位,即可得到函数的图象,故选:C【题目点拨】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题4、D【解题分析】首先算出直观图面积,再根据平面图形与直观图面积比为求解即可.【题目详解】因为等腰是一平面图形的直观图,直角边,所以直角三角形的面积是.又因为平面图形与直观图面积比为,所以原平面图形的面积是.故选:D5、C【解题分析】将函数图象向左平移个单位得到,令,当时得对称轴为考点:三角函数性质6、D【解题分析】对于①,当两向量垂直时,才有;对于②,当两向量垂直时,有,但不一定成立;对于③,当,时,可以是任意向量;对于④,当向量都为零向量时,【题目详解】解:对于①,因为,,所以当两向量垂直时,才有,所以①错误;对于②,因为,,所以或,所以②错误;对于③,因为,所以,所以可以是任意向量,不一定是相等向量,所以③错误;对于④,当时,,所以④错误,故选:D7、C【解题分析】先根据偶函数求出a、b的值,得到解析式,代入直接求解.【题目详解】因为偶函数的定义域关于原点对称,则,解得.又偶函数不含奇次项,所以,即,所以,所以.故选:C8、A【解题分析】解不等式,再判断不等式解集的包含关系即可.【题目详解】由得,由得,故“”是“”的充分不必要条件.故选:A.9、B【解题分析】根据函数的周期为2和函数fx是定义在R上的偶函数,可知flog【题目详解】因为fx是周期为2所以flog又函数fx定义在R上的偶函数,所以又当x∈0,1时,fx=所以flog23故选:B.10、A【解题分析】比较a、b、c与中间值0和1的大小即可﹒【题目详解】,,,∴﹒故选:A﹒二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解题分析】由题意利用函数的图象变换规律求得的解析式,可得的解析式,再根据余弦函数的值域,二次函数的性质,求得的值域【题目详解】函数的图象向右平移个单位长度,得到函数的图象,函数,,故当时,取得最大值为;当时,取得最小值为,故的值域为,,故答案为:;,12、2【解题分析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【题目详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:13、【解题分析】.14、①②【解题分析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知,命题正确;对于③,正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④,,最大值为,不正确;故填①②.15、①.55②.8【解题分析】将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,得到取出的次品的个数为8个,进而能求出次品袋的编号【题目详解】某工厂生产的产品中有正品和次品,其中正品重个,次品重个现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,取出的次品的个数为8个,则次品袋的编号为8故答案为:55;816、2x-1【解题分析】由题意可知函数在定义域内为增函数,且f1【题目详解】因为函数fx的定义域为D,且任取x1,x2所以fx因为f1所以f(x)=2故答案为:2x-1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解题分析】(1)甲城市这天内空气质量类别为良有天,利用频率估计概率的思想可求得结果;(2)列举出所有的基本事件,并利用古典概型的概率公式可求得结果;(3)根据题意可得出、、的大小关系.【题目详解】(1)甲城市这天内空气质量类别为良的有天,则估计甲城市月份某一天空气质量类别为良的概率为;(2)由题意,分别从甲、乙两个城市的统计数据中任取一个,所有的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,共个,用表示“这两个数据对应的空气质量类别都为轻度污染”,则事件包含的基本事件有:、、、,共个基本事件,所以,;(3)【题目点拨】方法点睛:求解古典概型概率的问题有如下方法:(1)列举法;(2)列表法;(3)树状图法;(4)排列组合数的应用.18、(1)(2)【解题分析】(1)利用函数为奇函数所以即得的值(2)方程有零点,转化为求的值域即可得解.试题解析:(1)∵,∴,∴(2)∵,∴,∵,∴,∴,∴19、(1);(2)和.【解题分析】(1)根据已知条件可得出关于、的方程组,解出这两个量的值,即可得出函数的解析式;(2)由可计算出的取值范围,利用正弦型函数的单调性可求得函数在上的单调递增区间.【题目详解】(1)由题意知,若,则,所以,又因为,所以,得,所以;(2)因为,所以,正弦函数在区间上的单调递增区间为和,此时即或,得或,所以在上的递增区间为和.20、(1);(2);(3)【解题分析】(1)根据方程的根与系数关系可求,,然后结合同角平方关系可求,(2)结合(1)可求,,结合同角基本关系即可求,(3)利用将式子化为齐次式,再利用同角三角函数的基本关系,将弦化切,代入可求【题目详解】解:(1)由题意可知,,,∴,∴,∴,(2)方程的两根分别为,,∵,∴,∴,,则,(3)【题目点拨】本题主要考查了同角三角函数关系式和万能公式的应用,属于基本知识的考查21、(1)或;(2)或;【解题分析】(1)在直线上任取一点,由已知角的终边过点,利用诱导公式与三角函数定义即可求解,要注意分类讨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农业技术合作免责责任书4篇
- 通信协议基础课程设计
- 年度掘进机市场分析及竞争策略分析报告
- 2024装饰工程监工质量保障合同模板版
- 二零二五版电子商务平台合作协议补充协议3篇
- 2025年度高品质社区门窗安装与物业综合服务协议3篇
- 2025年度综合能源服务项目承包工程合同范本4篇
- 2024投资融资咨询服务合同范本两
- 扶壁码头胸墙施工方案
- 汀步的施工方案
- 《药品招商营销概论》课件
- 2025年病案编码员资格证试题库(含答案)
- 2025新译林版英语七年级下单词表
- 新疆2024年中考数学试卷(含答案)
- 2024-2030年中国连续性肾脏替代治疗(CRRT)行业市场发展趋势与前景展望战略分析报告
- 跨学科主题学习:实施策略、设计要素与评价方式(附案例)
- 场地委托授权
- 2024年四川省成都市龙泉驿区中考数学二诊试卷(含答案)
- 项目工地春节放假安排及安全措施
- 印染厂安全培训课件
- 红色主题研学课程设计
评论
0/150
提交评论