版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市南汇中学2024届高一数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数则等于()A.-2 B.0C.1 D.22.已知集合,a=3.则下列关系式成立的是A.aAB.aAC.{a}AD.{a}∈A3.圆关于直线对称的圆的方程为A. B.C. D.4.已知点在圆外,则直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定5.已知m,n表示两条不同直线,表示平面,下列说法正确的是A.若则 B.若,,则C.若,,则 D.若,,则6.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.87.奇函数在内单调递减且,则不等式的解集为()A. B.C. D.8.已知函数的零点,(),则()A. B.C. D.9.已知实数满足,那么的最小值为(
)A. B.C. D.10.函数的单调减区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在长方体ABCD—中,AB=3cm,AD=2cm,,则三棱锥的体积___________.12.已知函数若方程恰有三个实数根,则实数的取值范围是_______.13.若不等式的解集为,则______,______14.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2,半径为1米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留两位有效数字,参考数据:,)15.函数的单调减区间是_________.16.若点位于第三象限,那么角终边落在第___象限三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数的图象与轴、轴共有三个交点.(1)求经过这三个交点的圆的标准方程;(2)当直线与圆相切时,求实数的值;(3)若直线与圆交于两点,且,求此时实数的值.18.已知函数是定义在上的奇函数,当时有.(1)求函数的解析式;(2)判断函数在上的单调性,并用定义证明.19.已知全集,集合,集合.(1)若,求;(2)若“”是“”必要不充分条件,求实数的取值范围.20.已知函数)的最大值为2(1)求m的值;(2)求使成立的x的取值集合;(3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值21.当,函数为,经过(2,6),当时为,且过(-2,-2).(1)求的解析式;(2)求;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据分段函数,根据分段函数将最终转化为求【题目详解】根据分段函数可知:故选:A2、C【解题分析】集合,,所以{a}A故选C.3、A【解题分析】由题意得,圆心坐标为,设圆心关于直线的对称点为,则,解得,所以对称圆方程为考点:点关于直线的对称点;圆的标准方程4、B【解题分析】由题意结合点与圆的位置关系考查圆心到直线的距离与圆的半径的大小关系即可确定直线与圆的位置关系.【题目详解】点在圆外,,圆心到直线距离,直线与圆相交.故选B.【题目点拨】本题主要考查点与圆的位置关系,直线与圆的位置关系等知识,意在考查学生的转化能力和计算求解能力.5、B【解题分析】线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系6、B【解题分析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【题目详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.7、A【解题分析】由已知可作出函数的大致图象,结合图象可得到答案.【题目详解】因为函数在上单调递减,,所以当时,,当,,又因为是奇函数,图象关于原点对称,所以在上单调递减,,所以当时,,当时,,大致图象如下,由得或,解得,或,或,故选:A.【题目点拨】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出的大致图象,考查了学生分析问题、解决问题的能力.8、D【解题分析】将函数化为,根据二次函数的性质函数的单调性,利用零点的存在性定理求出两个零点的分布,进而得出零点的取值范围,依次判断选项即可.【题目详解】由题意知,,则函数图象的对称轴为,所以函数在上单调递增,在上单调递减,又,,,,所以,因为,,所以,所以,故A错误;,故B错误;,故C错误;,故D正确.故选:D9、A【解题分析】表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【题目详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【题目点拨】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.10、A【解题分析】先求得函数的定义域,利用二次函数的性质求得函数的单调区间,结合复合函数单调性的判定方法,即可求解.【题目详解】由不等式,即,解得,即函数的定义域为,令,可得其图象开口向下,对称轴的方程为,当时,函数单调递增,又由函数在定义域上为单调递减函数,结合复合函数的单调性的判定方法,可得函数的单调减区间为.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】根据题意,求得棱锥的底面积和高,由体积公式即可求得结果.【题目详解】根据题意可得,平面,故可得,又因为,故可得.故答案为:.【题目点拨】本题考查三棱锥体积的求解,涉及转换棱锥的顶点,属基础题.12、【解题分析】令f(t)=2,解出t,则f(x)=t,讨论k的符号,根据f(x)的函数图象得出t的范围即可【题目详解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)当k=0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,即f(f(x))﹣2=0无解,不符合题意;(2)当k>0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,f(x)无解,即f(f(x))﹣2=0无解,不符合题意;(3)当k<0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k综上,k的取值范围是(﹣1,]故答案为(﹣1,]【题目点拨】本题考查了函数零点个数与函数图象的关系,数形结合思想,属于中档题13、①.②.【解题分析】由题设知:是的根,应用根与系数关系即可求参数值.【题目详解】由题设,是的根,∴,即,.故答案为:,.14、【解题分析】由题设可得“弦”为,“矢”为,结合弧田面积公式求面积即可.【题目详解】由题设,“弦”为,“矢”为,所以所得弧田面积是.故答案为:.15、##【解题分析】根据复合函数的单调性“同增异减”,即可求解.【题目详解】令,根据复合函数单调性可知,内层函数在上单调递减,在上单调递增,外层函数在定义域上单调递增,所以函数#在上单调递减,在上单调递增.故答案为:.16、四【解题分析】根据所给的点在第三象限,写出这个点的横标和纵标都小于0,根据这两个都小于0,得到角的正弦值小于0,余弦值大于0,得到角是第四象限的角【题目详解】解:∵点位于第三象限,∴sinθcosθ<02sinθ<0,∴sinθ<0,Cosθ>0∴θ是第四象限的角故答案为四【题目点拨】本题考查三角函数的符号,这是一个常用到的知识点,给出角的范围要求说出三角函数的符号,反过来给出三角函数的符号要求看出角的范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或;(3)【解题分析】(1)先求出二次函数的图象与坐标轴的三个交点的坐标,然后根据待定系数法求解可得圆的标准方程;(2)根据圆心到直线的距离等于半径可得实数的值;(3)结合弦长公式可得所求实数的值【题目详解】(1)在中,令,可得;令,可得或所以三个交点分别为,,,设圆的方程为,将三个点的坐标代入上式得,解得,所以圆的方程为,化为标准方程为:(2)由(1)知圆心,因为直线与圆相切,所以,解得或,所以实数的值为或(3)由题意得圆心到直线的距离,又,所以,则,解得所以实数的值为或【题目点拨】(1)求圆的方程时常用的方法有两种:一是几何法,即求出圆的圆心和半径即可得到圆的方程;二是用待定系数法,即通过代数法求出圆的方程(2)解决圆的有关问题时,要注意圆的几何性质的应用,合理利用圆的有关性质进行求解,可以简化运算、提高解题的效率18、(1);(2)见解析.【解题分析】(1)当时,则,可得,进而得到函数的解析式;(2)利用函数的单调性的定义,即可证得函数的单调性,得到结论.【题目详解】(1)由题意,当时,则,可得,因为函数为奇函数,所以,所以函数的解析式为.(2)函数在单调递增函数.证明:设,则因为,所以所以,即故在为单调递增函数【题目点拨】本题主要考查了利用函数的奇偶性求解函数的解析式,以及函数的单调性的判定与证明,其中解答中熟记函数的单调性的定义,以及熟练应用的函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)(2)【解题分析】(1)求出集合,利用补集和交集的定义可求得;(2)分析可知且,可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:当时,,则或,,因此,.【小问2详解】解:因为“”是“”必要不充分条件,于是得且,所以,,解得.所以实数的取值范围是.20、(1)(2)(3)【解题分析】(1)将函数解析式化简整理,然后求出最值,进而得到,即可求出结果;(2)结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于多媒体资源的小学科学课堂的情感体验教学
- 小学科学实验室安全文化培育与实践
- 2024年项目配套工程合同
- 二零二五年度环保设备采购维护合同2篇
- 2024福州二手房买卖合同
- 2024版运输合同模板
- 二零二五年度智能家居家电手势控制系统精装修合同范本3篇
- 2025年度城市更新项目临时房屋借用安置合同3篇
- 2024年航空航天器制造与销售合同
- 2024车联网技术在智能交通中的应用开发合同
- 再生资源回收体系及综合型绿色分拣中心项目可行性研究报告模板-立项拿地
- 2024年婚姻登记处个人总结(二篇)
- 世界防治麻风病日宣传课件
- HSK标准教程5上-课件-L1
- JCT 871-2023 镀银玻璃镜 (正式版)
- 国家开放大学(机电控制工程基础)试题
- 中建项目管理手册2023年
- 2024年湖南省益阳市初中学业水平考试物理模拟试卷
- 2024-2030年中国产业园区轻资产运营行业市场发展分析及运营模式与企业案例研究报告
- 新人教版七年级上册《生物》期末考试卷及答案【下载】
- JC-T 746-2023 混凝土瓦标准规范
评论
0/150
提交评论