2024届黑龙江省哈三中高一数学第一学期期末预测试题含解析_第1页
2024届黑龙江省哈三中高一数学第一学期期末预测试题含解析_第2页
2024届黑龙江省哈三中高一数学第一学期期末预测试题含解析_第3页
2024届黑龙江省哈三中高一数学第一学期期末预测试题含解析_第4页
2024届黑龙江省哈三中高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省哈三中高一数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②2.入冬以来,雾霾天气在部分地区频发,给人们的健康和出行造成严重的影响.经研究发现,工业废气等污染排放是雾霾形成和持续的重要因素,治理污染刻不容缓.为降低对空气的污染,某工厂采购一套废气处理装备,使工业生产产生的废气经过过滤后再排放.已知过滤过程中废气的污染物数量P(单位:mg/L)与过滤时间t(单位:h)间的关系为(,k均为非零常数,e为自然对数底数),其中为t=0时的污染物数量,若经过3h处理,20%的污染物被过滤掉,则常数k的值为()A. B.C. D.3.已知向量,满足,,且与的夹角为,则()A. B.C. D.4.函数f(x)=-4x+2x+1的值域是()A. B.C. D.5.函数的定义域是()A. B.C. D.6.若、是全集真子集,则下列四个命题①;②;③;④中与命题等价的有A.1个 B.2个C.3个 D.4个7.全集,集合,则()A. B.C. D.8.已知关于的方程的两个实根为满足则实数的取值范围为A. B.C. D.9.已知,则的大小关系为()A B.C. D.10.若a,b都为正实数且,则的最大值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下列命题中正确的是__________.(填上所有正确命题的序号)①若,,则;②若,,则;③若,,则;④若,,,,则12.若是第三象限的角,则是第________象限角;13.如图,已知△和△有一条边在同一条直线上,,,,在边上有个不同的点F,G,则的值为______14.已知单位向量与的夹角为,向量的夹角为,则cos=_______15.函数的最大值为().16.下列说法正确的序号是__________________.(写出所有正确的序号)①正切函数在定义域内是增函数;②已知函数的最小正周期为,将的图象向右平移个单位长度,所得图象关于轴对称,则的一个值可以是;③若,则三点共线;④函数的最小值为;⑤函数在上是增函数,则的取值范围是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算:(1);(2)已知,求.18.已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.19.已知1与2是三次函数的两个零点.(1)求的值;(2)求不等式的解集.20.已知函数的图象关于原点对称.(Ⅰ)求,的值;(Ⅱ)若函数在内存在零点,求实数的取值范围.21.如图,正方体的棱长为1,CB′∩BC′=O,求:(1)AO与A′C′所成角的度数;(2)AO与平面ABCD所成角的正切值;(3)证明平面AOB与平面AOC垂直.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【题目详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【题目点拨】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.2、A【解题分析】由题意可得,从而得到常数k的值.【题目详解】由题意可得,∴,即∴故选:A3、A【解题分析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.【题目详解】因为,,且与的夹角为,所以,因此.故选:A.4、A【解题分析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域【题目详解】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),其对称轴方程为t=,∴当t=时,g(t)有最大值为∴函数f(x)=-4x+2x+1的值域是故选A【题目点拨】本题考查利用换元法及二次函数求值域,是基础题5、A【解题分析】利用对数函数的真数大于零,即可求解.【题目详解】由函数,则,解得,所以函数的定义域为.故选:A【题目点拨】本题考查了对数型复合函数的定义域,需熟记对数的真数大于零,属于基础题.6、B【解题分析】直接根据集合的交集、并集、补集的定义判断集合间的关系,从而求出结论【题目详解】解:由得Venn图,①;②;③;④;故和命题等价的有①③,故选:B【题目点拨】本题主要考查集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于基础题7、B【解题分析】先求出集合A,再根据补集定义求得答案.【题目详解】由题意,,则.故选:B.8、D【解题分析】利用二次方程实根分布列式可解得.【题目详解】设,根据二次方程实根分布可列式:,即,即,解得:.故选D.【题目点拨】本题考查了二次方程实根的分布.属基础题.9、B【解题分析】观察题中,不妨先构造函数比较大小,再利用中间量“1”比较与大小即可得出答案.【题目详解】由题意得,,由函数在上是增函数可得,由对数性质可知,,所以,故选:B10、D【解题分析】由基本不等式,结合题中条件,直接求解,即可得出结果.【题目详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、③【解题分析】对于①,若,,则与可能异面、平行,故①错误;对于②,若,,则与可能平行、相交,故②错误;对于③,若,,则根据线面垂直的性质,可知,故③正确;对于④,根据面面平行的判定定理可知,还需添加相交,故④错误,故答案为③.【方法点晴】本题主要考查线面平行的判定与性质、面面平行的性质及线面垂直的性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.12、一或三【解题分析】根据的范围求得的范围,从而确定正确答案.【题目详解】依题意,,,所以当为奇数时,在第三象限;当为偶数时,在第一象限.故答案:一或三13、16【解题分析】由题意易知:△和△为全等的等腰直角三角形,斜边长为,,故答案为16点睛:平面向量数量积类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cosθ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.本题就是利用几何意义处理的.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.14、【解题分析】根据题意,由向量的数量积计算公式可得•、||、||的值,结合向量夹角计算公式计算可得答案【题目详解】根据题意,单位向量,的夹角为,则•1×1×cos,32,3,则•(32)•(3)=92+22﹣9•,||2=(32)2=92+42﹣12•7,则||,||2=(3)2=922﹣6•7,则||,故cosβ.故答案为【题目点拨】本题主要考查向量的数量积的运算和向量的夹角的计算,意在考察学生对这些知识的掌握水平和分析推理能力.15、【解题分析】利用可求最大值.【题目详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【题目点拨】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.16、③⑤【解题分析】对每一个命题逐一判断得解.【题目详解】①正切函数在内是增函数,所以该命题是错误的;②因为函数的最小正周期为,所以w=2,所以将的图象向右平移个单位长度得到,所得图象关于轴对称,所以,所以的一个值不可以是,所以该命题是错误的;③若,因为,所以三点共线,所以该命题是正确的;④函数=,所以sinx=-1时,y最小为-1,所以该命题是错误的;⑤函数在上是增函数,则,所以的取值范围是.所以该命题是正确的.故答案为③⑤【题目点拨】本题主要考查正切函数的单调性,考查正弦型函数的图像和性质,考查含sinx的二次型函数的最值的计算,考查对数型函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据对数的运算法则和对数恒等式,即可求解;(2)根据同角三角函数关系,由已知可得,代入所求式子,即可求解.【题目详解】(1)原式;(2)∵∴∴.18、(1).(2).【解题分析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.19、(1);(2)【解题分析】(1)根据函数零点的定义得,解方程即可得答案;(2)由(1)得,进而根据二次函数性质解不等式即可.【题目详解】解:(1)因为1与2是三次函数的两个零点所以根据函数的零点的定义得:,解得:.(2)由(1)得,根据二次函数的性质得不等式的解集为:所以不等式的解集为20、(1),;(2)【解题分析】(Ⅰ)题意说明函数是奇函数,因此有恒成立,由恒等式知识可得关于的方程组,从而可解得;(Ⅱ)把函数化简得,这样问题转化为方程在内有解,也即在内有解,只要作为函数,求出函数的值域即得试题解析:(Ⅰ)函数的图象关于原点对称,所以,所以,所以,即,所以,解得,;(Ⅱ)由,由题设知在内有解,即方程在内有解.在内递增,得.所以当时,函数在内存在零点.21、(1)30°(2)(3)见解析【解题分析】(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法求AO与A′C′所成角的度数;(2)利用向量法求AO与平面ABCD所成角的正切值;(3)证明平面AOB与平面AOC的法向量垂直.【题目详解】(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A(1,0,0),O(),(1,0,1),C′(0,1,1),(,1,),(﹣1,1,0),设AO与A′C′所成角为θ,则cosθ,∴θ=30°,∴AO与A′C′所成角为30°.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论