版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省十四校2024届数学高一上期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.,,这三个数之间的大小顺序是()A. B.C. D.2.函数的最小值和最小正周期为()A.1和2π B.0和2πC.1和π D.0和π3.函数f(x)=log3x-8+2x的零点一定位于区间A. B.C. D.4.已知,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.半径为3cm的圆中,有一条弧,长度为cm,则此弧所对的圆心角为()A. B.C. D.6.下列函数中,既是偶函数又在区间0,+∞A.y=-x2C.y=x37.已知实数,满足,,则的最大值为()A. B.1C. D.28.y=sin(2x-)-sin2x的一个单调递增区间是A. B.C. D.9.将函数图象向左平移个单位,所得函数图象的一条对称轴的方程是A. B.C. D.10.的值等于A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递增区间为__________12.已知函数,使方程有4个不同的解:,则的取值范围是_________;的取值范围是________.13.若命题“,”为假命题,则实数的取值范围为______.14.已知一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的周长为___cm.15.函数的单调递增区间是_________16.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数f(x)的最小正周期和单调递增区间;(2)求函数f(x)在区间上的最大值和最小值18.已知函数,,.(1)若函数与的图象的一个交点的横坐标为2,求a;(2)若,求证:.19.已知函数,.(1)若函数在为增函数,求实数的取值范围;(2)若函数为偶函数,且对于任意,,都有成立,求实数的取值范围.20.设全集实数集,,(1)当时,求和;(2)若,求实数的取值范围21.已知函数(为常数)是奇函数(1)求的值;(2)判断函数在上的单调性,并予以证明
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用指数函数和对数函数的性质比较即可【题目详解】解:因为在上为减函数,且,所以,因为在上为增函数,且,所以,因为在上为增函数,且,所以,综上,,故选:C2、D【解题分析】由正弦函数的性质即可求得的最小值和最小正周期【题目详解】解:∵,∴当=﹣1时,f(x)取得最小值,即f(x)min;又其最小正周期Tπ,∴f(x)的最小值和最小正周期分别是:,π故选D【题目点拨】本题考查正弦函数的周期性与最值,熟练掌握正弦函数的图象与性质是解题关键,属于中档题3、B【解题分析】根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理4、B【解题分析】先由,得到,再由充分条件与必要条件的概念,即可得出结果.【题目详解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分条件.故选:B.【题目点拨】本题主要考查命题的必要不充分条件的判定,熟记充分条件与必要条件的概念即可,属于常考题型.5、A【解题分析】利用弧长公式计算即可【题目详解】,故选:A6、A【解题分析】根据基本函数的性质和偶函数的定义分析判断即可【题目详解】对于A,因为f(x)=-(-x)2=-x2=f(x),所以y=-x2是偶函数,对于B,y=2x是非奇非偶函数,所以对于C,因为f(-x)=(-x)3=-x3对于D,y=lnx=lnx,x>0故选:A7、C【解题分析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值进行求解【题目详解】由,得,令,则,因为,所以,即,所以的最大值为,故选:C8、B【解题分析】,由,得,,时,为,故选B9、C【解题分析】将函数图象向左平移个单位得到,令,当时得对称轴为考点:三角函数性质10、C【解题分析】因为,所以可以运用两角差的正弦公式、余弦公式,求出的值.【题目详解】,,,故本题选C.【题目点拨】本题考查了两角差的正弦公式、余弦公式、以及特殊角的三角函数值.其时本题还可以这样解:,.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.12、①.②.【解题分析】先画出分段函数的图像,依据图像得到之间的关系式以及之间的关系式,分别把和转化成只有一个自变量的代数式,再去求取值范围即可.【题目详解】做出函数的图像如下:在单调递减:最小值0;在单调递增:最小值0,最大值2;在上是部分余弦型曲线:最小值,最大值2.若方程有4个不同的解:,则不妨设四个解依次增大,则是方程的解,则,即;是方程的解,则由余弦型函数的对称性可知.故,由得即当时,单调递减,则故答案为:①;②13、【解题分析】命题为假命题时,二次方程无实数解,据此可求a的范围.【题目详解】若命题“,”为假命题,则一元二次方程无实数解,∴.∴a的取值范围是:.故答案为:.14、6π+40【解题分析】根据角度制与弧度制的互化,可得圆心角,再由扇形的弧长公式,可得弧长,即可求解扇形的周长,得到答案.【题目详解】由题意,根据角度制与弧度制的互化,可得圆心角,∴由扇形的弧长公式,可得弧长,∴扇形的周长为.【题目点拨】本题主要考查了扇形的弧长公式的应用,其中解答中熟记扇形的弧长公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.15、【解题分析】设,或为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.16、【解题分析】在圆C2上任取一点(x,y),则此点关于直线对称点(y+1,x-1)在圆C1:上,所以有(y+1+1)2+(x-1-1)2=1,即,所以答案为考点:点关于直线的对称点的求法点评:本题考查一曲线关于一直线对称的曲线方程的求法:在圆C2上任取一点(x,y),则此点关于直线的对称点(y+1,x-1)在圆C1上三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,单调递增区间为,k∈Z;(2)最大值为,最小值为【解题分析】(1)先通过降幂公式化简得,进而求出最小正周期和单调递增区间;(2)通过,求出,进而求出最大值和最小值.【小问1详解】,∴函数f(x)的最小正周期为,令,k∈Z,则,k∈Z,∴函数f(x)的单调递增区间为,k∈Z【小问2详解】∵,∴,则,∴,∴函数f(x)的最大值为,最小值为18、(1)(2)证明见解析【解题分析】(1)根据题意,分析可得,变形解可得答案;(2)根据题意,设,结合二次函数的性质分析可得,当时,恒成立,即可得结论【小问1详解】根据题意,若函数与的图象的一个交点的横坐标为2,则,变形可得或,解可得;无解;故;【小问2详解】证明:设,当时,,其对称轴为,又由,则其对称轴,又由,在区间,上为增函数,则,当时,,开口向上,当时,,必有恒成立,综合可得:当是,恒成立,即恒成立19、(1)(2)【解题分析】(1)利用定义法证明函数的单调性,依题意可得,即,参变分离可得对恒成立,再根据指数函数的性质计算可得;(2)由函数为偶函数,得到,即可求出的值,从而得到的解析式,再利用基本不等式得到,依题意,可得对任意恒成立,即对任意恒成立,①由有意义,求得;②由,得,即可得到对任意恒成立,从而求出,从而求出参数的取值范围;【小问1详解】解:设,且,则∵函数在上为增函数,∴恒成立又∵,∴,∴恒成立,即对恒成立当时,的取值范围为,故,即实数取值范围为.【小问2详解】解:∵为偶函数,∴对任意都成立,又∵上式对任意都成立,∴,∴,∴,当且仅当时等号成立,∴的最小值为0,∴由题意,可得对任意恒成立,∴对任意恒成立①由有意义,得在恒成立,得在恒成立,又在上值域为,故②由,得,得,得,得,得,∴对任意恒成立,又∵在的最大值为,∴,由①②得,实数的取值范围为.20、(1),;(2).【解题分析】把代入集合B,求出集合B的解集,再根据交集和并集的定义进行求解;因为,可知,求出,再根据子集的性质进行求解;【题目详解】(1)由题意,可得,当时,,则,若,则或,、当时,,满足A.当时,,又,则综上,【题目点拨】本题主要考查了交集和并集的定义以及子集的性质,其中解答中熟记集合的运算,以及合理分类讨论是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于基础题.21、(1)1;(2)函数在上是减函数,证明见详解.【解题分析】(1)利用,化简后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版离婚后财产分割与债权债务处理合同3篇
- 二零二五年度物业管理居间服务合同范本3篇
- 二零二五版土地开发与经营权转让协议6篇
- 二零二五年航天科技独立董事航天工程管理与创新合同2篇
- 二零二五版股权质押融资税务筹划服务合同样本3篇
- 2025年新型挖掘机施工项目进度管理协议书3篇
- 2025年度高端医疗设备采购及维护服务合同4篇
- 二零二五年度生态农业大棚设施建设与租赁合作协议3篇
- 二零二五年驾驶员交通违法查询与处理服务协议3篇
- 驾校教练员招聘与选拔合同(二零二五年)3篇
- 餐饮行业智慧餐厅管理系统方案
- 2025年度生物医药技术研发与许可协议3篇
- 国家开发银行
- 超分子化学-第三章 阴离子的络合主体
- 控制变量法教学课件
- 血压计保养记录表
- 食品的售后服务承诺书范本范文(通用3篇)
- 新外研版九年级上册(初三)英语全册教学课件PPT
- 初中中考英语总复习《代词动词连词数词》思维导图
- 植物和五行关系解说
- 因式分解法提公因式法公式法
评论
0/150
提交评论