版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TemperatureControlUsingaMicrocontroller:
AnInterdisciplinaryUndergraduateEngineeringDesignProject
JamesS.McDonald
DepartmentofEngineeringScience
TrinityUniversity
SanAntonio,TX78212
Abstract
Thispaperdescribesaninterdisciplinarydesignprojectwhichwasdoneundertheauthor’ssupervisionbyagroupoffourseniorstudentsintheDepartmentofEngineeringScienceatTrinityUniversity.Theobjectiveoftheprojectwastodevelopatemperaturecontrolsystemforanair-filledchamber.Thesystemwastoallowentryofadesiredchambertemperatureinaprescribedrangeandtoexhibitovershootandsteady-statetemperatureerroroflessthan1degreeKelvinintheactualchambertemperaturestepresponse.Thedetailsofthedesigndevelopedbythisgroupofstudents,basedonaMotorolaMC68HC05familymicrocontroller,aredescribed.Thepedagogicalvalueoftheproblemisalsodiscussedthroughadescriptionofsomeofthekeystepsinthedesignprocess.Itisshownthatthesolutionrequiresbroadknowledgedrawnfromseveralengineeringdisciplinesincludingelectrical,mechanical,andcontrolsystemsengineering.
Introduction
Thedesignprojectwhichisthesubjectofthispaperoriginatedfromareal-worldapplication.AprototypeofamicroscopeslidedryerhadbeendevelopedaroundanOmegaTMmodelCN-390temperaturecontroller,andtheobjectivewastodevelopacustomtemperaturecontrolsystemtoreplacetheOmegasystem.Themotivationwasthatacustomcontrollertargetedspecificallyfortheapplicationshouldbeabletoachievethesamefunctionalityatamuchlowercost,astheOmegasystemisunnecessarilyversatileandequippedtohandleawidevarietyofapplications.
ThemechanicallayoutoftheslidedryerprototypeisshowninFigure1.Themainelementofthedryerisalarge,insulated,air-filledchamberinwhichmicroscopeslides,eachwithatissuesampleencasedinparaffin,canbesetoncaddies.Inorderthattheparaffinmaintaintheproperconsistency,thetemperatureintheslidechambermustbemaintainedatadesired(constant)temperature.Asecondchamber(theelectronicsenclosure)housesaresistiveheaterandthetemperaturecontroller,andafanmountedontheendofthedryerblowsairacrosstheheater,carryingheatintotheslidechamber.Thisdesignprojectwascarriedoutduringacademicyear1996-97byfourstudentsundertheauthor’ssupervisionasaSeniorDesignprojectinthe
DepartmentofEngineeringScienceatTrinityUniversity.Thepurposeofthispaperis
10.25"TopView
Electronicsenclosure( Tempe工苜tuiuizontfuLlut
FigureLSlided/yerwechantcallayoui
todescribetheproblemandthestudents’solutioninsomedetail,andtodiscusssome
ofthepedagogicalopportunitiesofferedbyaninterdisciplinarydesignprojectofthistype.Thestudents’ownreportwaspresentedatthe1997NationalConferenceonUndergraduateResearch[1].Section2givesamoredetailedstatementoftheproblem,includingperformancespecifications,andSection3describesthestudents’design.Section4makesupthebulkofthepaper,anddiscussesinsomedetailseveralaspectsofthedesignprocesswhichofferuniquepedagogicalopportunities.Finally,Section5offerssomeconclusions.
ProblemStatement
ThebasicideaoftheprojectistoreplacetherelevantpartsofthefunctionalityofanOmegaCN-390temperaturecontrollerusingacustom-designedsystem.Theapplicationdictatesthattemperaturesettingsareusuallykeptconstantforlongperiodsoftime,butit’snonethelessimportantthatstepchangesbetrackedina“reasonable”manner.Thusthemainrequirementsboildownto
allowingachambertemperatureset-pointtobeentered,
displayingbothset-pointandactualtemperatures,and
•trackingstepchangesinset-pointtemperaturewithacceptablerisetime,steady-stateerror,andovershoot.
Table1.TemperatureconWollerspecifications
Set-pointtemperatureentiy
Range
Precision
60-99°C
1nC
Set-pointtemperaturedisplay
RangePrecision
60-99°C
1℃
ChambeiLtemperaturedisplay
RangePrecisionAccuracy
60-99°C
1℃±1℃
Chambertemperaturestepresponse
Range(steadystate)Accuracy(steadystate)MaximuinovershootSettlingtime(to±LC)
60-99°C士1℃
1℃
120s
AlthoughnotexplicitlyapartofthespecificationsinTable1,itwasclearthatthecustomerdesireddigitaldisplaysofset-pointandactualtemperatures,andthatset-pointtemperatureentryshouldbedigitalaswell(asopposedto,say,throughapotentiometersetting).
SystemDesign
Therequirementsfordigitaltemperaturedisplaysandsetpointentryaloneareenoughtodictatethatamicrocontrollerbaseddesignislikelythemostappropriate.Figure2showsablockdiagramofthestudents’design.
Themicrocontroller,aMotorolaMC68HC705B16(6805forshort),istheheartofthesystem.Itacceptsinputsfromasimplefour-keykeypadwhichallowspecificationoftheset-pointtemperature,anditdisplaysbothset-pointandmeasuredchamber
temperaturesusingtwo-digitseven-segmentLEDdisplayscontrolledbyadisplaydriver.Alltheseinputsandoutputsareaccommodatedbyparallelportsonthe6805.Chambertemperatureissensedusingapre-calibratedthermistorandinputviaoneofthe6805’sanalog-to-digitalinputs.Finally,apulse-widthmodulation(PWM)outputonthe6805isusedtodrivearelaywhichswitcheslinepowertotheresistiveheateroffandon.
Figure3showsamoredetailedschematicoftheelectronicsandtheirinterfacingtothe6805.Thekeypad,aStorm3K041103,hasfourkeyswhichareinterfacedtopinsPA0{PA3ofPortA,configuredasinputs.Onekeyfunctionsasamodeswitch.Twomodesaresupported:setmodeandrunmode.Insetmodetwooftheotherkeysareusedtospecifytheset-pointtemperature:oneincrementsitandonedecrements.Thefourthkeyisunusedatpresent.TheLEDdisplaysaredrivenbyaHarrisSemiconductorICM7212displaydriverinterfacedtopinsPB0{PB6ofPortB,configuredasoutputs.Thetemperature-sensingthermistordrives,throughavoltagedivider,pinAN0(oneofeightanaloginputs).Finally,pinPLMA(oneoftwoPWMoutputs)drivestheheaterrelay.
Figure3.Schematicof basrd
Softwareonthe6805implementsthetemperaturecontrolalgorithm,maintains
WV
Heater
12TABcDAE
thetemperaturedisplays,andalterstheset-pointinresponsetokeypadinputs.
Becauseitisnotcompleteatthiswriting,softwarewillnotbediscussedindetailinthispaper.Thecontrolalgorithminparticularhasnotbeendetermined,butitislikelytobeasimpleproportionalcontrollerandcertainlynotmorecomplexthanaPID.SomecontroldesignissueswillbediscussedinSection4,however.
TheDesignProcess
Althoughessentiallytheprojectisjusttobuildathermostat,itpresentsmanynicepedagogicalopportunities.Theknowledgeandexperiencebaseofaseniorengineeringundergraduatearejustenoughtobringhimorhertothebrinkofasolutiontovariousaspectsoftheproblem.Yet,ineachcase,realworldconsiderationscomplicatethesituationsignificantly.
Fortunatelythesecomplicationsarenotinsurmountable,andtheresultisaverybeneficialdesignexperience.Theremainderofthissectionlooksatafewaspectsoftheproblemwhichpresentthetypeoflearningopportunityjustdescribed.Section4.1discussessomeofthefeaturesofasimplifiedmathematicalmodelofthethermalpropertiesofthesystemandhowitcanbeeasilyvalidatedexperimentally.Section4.2describeshowrealisticcontrolalgorithmdesignscanbearrivedatusingintroductoryconceptsincontroldesign.Section4.3pointsoutsomeimportantdeficienciesofsuchasimplifiedmodeling/controldesignprocessandhowtheycanbeovercomethroughsimulation.Finally,Section4.4givesanoverviewofsomeofthemicrocontroller-relateddesignissueswhichariseandlearningopportunitiesoffered.
MathematicalModel
Lumped-elementthermalsystemsaredescribedinalmostanyintroductorylinearcontrolsystemstext,andjustthissortofmodelisapplicabletotheslidedryerproblem.Figure4showsasecond-orderlumped-elementthermalmodeloftheslidedryer.ThestatevariablesarethetemperaturesTaoftheairintheboxandTboftheboxitself.Theinputstothesystemarethepoweroutputq(t)oftheheaterandtheambienttemperatureT¥.maandmbarethemassesoftheairandthebox,respectively,andCaandCbtheirspecificheats.四1and四2areheattransfercoefficientsfromtheairtotheboxandfromtheboxtotheexternalworld,respectively.
Figure4.Lmiped-elemeiilthermalmodel
It’snothardtoshowthatthe(linearized)stateequationscorrespondingtoFigure
4are
(〃-㈤
-m~乙j
TakingLaplacetransformsof(1)and(2)andsolvingforTa(s),whichistheoutputofinterest,givesthefollowingopen-loopmodelofthethermalsystem:
whereKisaconstantandD(s)isasecond-orderpolynomial.K,tz,andthecoefficientsofD(s)arefunctionsofthevariousparametersappearingin(1)and(2).Ofcoursethevariousparametersin(1)and(2)arecompletelyunknown,butit’snothardtoshowthat,regardlessoftheirvalues,D(s)hastworealzeros.Thereforethemaintransferfunctionofinterest(whichistheonefromQ(s),sincewe’llassumeconstantambienttemperature)canbewritten
Moreover,it’snottoohardtoshowthat1=tp1<1=tz<1=tp2,i.e.,thatthezeroliesbetweenthetwopoles.Bothoftheseareexcellentexercisesforthestudent,andtheresultistheopenlooppole-zerodiagramofFigure5.
FigurexPole-zerodiagramofGaq(s)
Obtainingacompletethermalmodel,then,isreducedtoidentifyingtheconstantKandthethreeunknowntimeconstantsin(3).Fourunknownparametersisquiteafew,butsimpleexperimentsshowthat1=tp1_1=tz;1=tp2sothattz;tp2_0aregoodapproximations.Thustheopen-loopsystemisessentiallyfirst-orderandcanthereforebewritten
G/s)=含 ⑷
(wherethesubscriptp1hasbeendropped).
Simpleopen-loopstepresponseexperimentsshowthat,forawiderangeofinitialtemperaturesandheatinputs,K_0:14_=Wandt_295s.1
ControlSystemDesign
Usingthefirst-ordermodelof(4)fortheopen-looptransferfunctionGaq(s)andassumingforthemomentthatlinearcontroloftheheaterpoweroutputq(t)ispossible,theblockdiagramofFigure6representstheclosed-loopsystem.Td(s)isthedesired,orset-point,temperature,C(s)isthecompensatortransferfunction,andQ(s)isthe
heateroutputinwatts.
Figure6.Simplifiedblockdiagrctntoftheclosed-loopsystem
Giventhissimplesituation,introductorylinearcontroldesigntoolssuchastherootlocusmethodcanbeusedtoarriveataC(s)whichmeetsthestepresponserequirementsonrisetime,steady-stateerror,andovershootspecifiedinTable1.Theupshot,ofcourse,isthataproportionalcontrollerwithsufficientgaincanmeetallspecifications.Overshootisimpossible,andincreasinggainsdecreasesbothsteady-stateerrorandrisetime.
Unfortunately,sufficientgaintomeetthespecificationsmayrequirelargerheatoutputsthantheheateriscapableofproducing.Thiswasindeedthecaseforthissystem,andtheresultisthattherisetimespecificationcannotbemet.Itisquiterevealingtothestudenthowusefulsuchanoversimplifiedmodel,carefullyarrivedat,canbeindeterminingoverallperformancelimitations.
SimulationModel
GrossperformanceanditslimitationscanbedeterminedusingthesimplifiedmodelofFigure6,butthereareanumberofotheraspectsoftheclosed-loopsystemwhoseeffectsonperformancearenotsosimplymodeled.Chiefamongtheseare
quantizationerrorinanalog-to-digitalconversionofthemeasuredtemperatureand
theuseofPWMtocontroltheheater.
Bothofthesearenonlinearandtime-varyingeffects,andtheonlypracticalwaytostudythemisthroughsimulation(orexperiment,ofcourse).
Figure7showsaSimulinkTMblockdiagramoftheclosed-loopsystemwhichincorporatestheseeffects.A/DconverterquantizationandsaturationaremodeledusingstandardSimulinkquantizerandsaturationblocks.ModelingPWMismorecomplicatedandrequiresacustomS-functiontorepresentit.
Figure7,SiumUnkblockdiagramofclosed-loopsystem
ThissimulationmodelhasprovenparticularlyusefulingaugingtheeffectsofvaryingthebasicPWMparametersandhenceselectingthemappropriately.(I.e.,thelongertheperiod,thelargerthetemperatureerrorPWMintroduces.Ontheotherhand,alongperiodisdesirabletoavoidexcessiverelay“chatter,”amongotherthings.)PWMisoftendifficultforstudentstograsp,andthesimulationmodelallowsanexplorationofitsoperationandeffectswhichisquiterevealing.
TheMicrocontroller
Simpleclosed-loopcontrol,keypadreading,anddisplaycontrolaresomeoftheclassicapplicationsofmicrocontrollers,andthisprojectincorporatesallthree.Itisthereforeanexcellentall-aroundexerciseinmicrocontrollerapplications.Inaddition,becausetheprojectistoproduceanactualpackagedprototype,itwon’tdotouseasimpleevaluationboardwiththeI/Opinsjumperedtothetargetsystem.Instead,it’snecessarytodevelopacompleteembeddedapplication.Thisentailsthechoiceofanappropriatepartfromthebroadrangeofferedinatypicalmicrocontrollerfamilyandlearningtouseafairlysophisticateddevelopmentenvironment.Finally,acustomprinted-circuitboardforthemicrocontrollerandperipheralsmustbedesignedandfabricated.
MicrocontrollerSelection.Inviewofexistinglocalexpertise,theMotorolalineofmicrocontrollerswaschosenforthisproject.Still,thisdoesnotnarrowthechoicedownmuch.Afairlydisciplinedstudyofsystemrequirementsisnecessarytospecifywhichmicrocontroller,outofscoresofvariants,isrequiredforthejob.Thisisdifficultforstudents,astheygenerallylacktheexperienceandintuitionneededaswellastheperseverancetowadethroughmanufacturers’selectionguides.
Partoftheproblemisinchoosingmethodsforinterfacingthevariousperipherals(e.g.,whatkindofdisplaydrivershouldbeused?).AstudyofrelevantMotorolaapplicationnotes[2,3,4]provedveryhelpfulinunderstandingwhatbasicapproachesareavailable,andwhatmicrocontroller/peripheralcombinationsshouldbeconsidered.
TheMC68HC705B16wasfinallychosenonthebasisofitsavailableA/DinputsandPWMoutputsaswellas24digitalI/Olines.Inretrospectthisisprobablyoverkill,asonlyoneA/Dchannel,onePWMchannel,and11I/Opinsareactuallyrequired(seeFigure3).Thedecisionwasmadetoerronthesafesidebecauseacompletedevelopmentsystemspecifictothechosenpartwasnecessary,andtheprojectbudgetdidnotpermitasecondsuchsystemtobepurchasedshouldthefirstproveinadequate.
MicrocontrollerApplicationDevelopment.Breadboardingoftheperipheral
hardware,developmentofmicrocontrollersoftware,andfinaldebuggingandtestingofacustomprinted-circuitboardforthemicrocontrollerandperipheralsallrequireadevelopmentenvironmentofsomekind.Thechoiceofadevelopmentenvironment,likethatofthemicrocontrolleritself,canbebewilderingandrequiressomefacultyexpertise.Motorolamakesthreegradesofdevelopmentenvironmentrangingfromsimpleevaluationboards(ataround$100)tofull-blownreal-timein-circuitemulators(atmorelike$7500).Themiddleoptionwaschosenforthisproject:theMMEVS,whichconsistsof_aplatformboard(whichsupportsall6805-familyparts),_anemulatormodule(specifictoB-seriesparts),and_acableandtargetheadadapter(package-specific).Overall,thesystemcostsabout$900andprovides,withsomelimitations,in-circuitemulationcapability.ItalsocomeswiththesimplebutsufficientsoftwaredevelopmentenvironmentRAPID[5].
Studentsfindlearningtousethistypeofsystemchallenging,buttheexperiencetheygaininreal-worldmicrocontrollerapplicationdevelopmentgreatlyexceedsthetypicalfirst-courseexperienceusingsimpleevaluationboards.
Printed-CircuitBoard.Thelayoutofasimple(thoughdefinitelynottrivial)printed-circuitboardisanotherpracticallearningopportunitypresentedbythisproject.Thefinalboardlayout,withpackageoutlines,isshown(at50%ofactualsize)inFigure8.Therelativesimplicityofthecircuitmakesmanualplacementandroutingpractical—infact,itlikelygivesbetterresultsthanautomaticinanapplicationlikethis—andthestudentisthereforeexposedtofundamentalissuesofprinted-circuitlayoutandbasicdesignrules.Thelayoutsoftwareusedwastheverynicepackagepcb,2andtheboardwasfabricatedin-housewiththeaidofourstaffelectronicstechnician.
Figure&Printed-circidtlayoutformicrocontrollerboard
5Conclusion
Theaimofthispaperhasbeentodescribeaninterdisciplinary,undergraduateengineeringdesignproject:amicrocontroller-basedtemperaturecontrolsystemwithdigitalset-pointentryandset-point/actualtemperaturedisplay.Aparticulardesignofsuchasystemhasbeendescribed,andanumberofdesignissueswhicharise—fromavarietyofengineeringdisciplines—havebeendiscussed.Resolutionofthese
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 捐赠的演讲稿7篇
- 施工现场工完场清管理制度
- 24.5 相似三角形的性质(第4课时)同步练习
- 租户消防安全的承诺书范文(34篇)
- 销售经理工作转正个人总结
- 高中古诗文学案:《静女》《涉江采芙蓉》
- 天津市红桥区2024-2025学年高二上学期11月期中英语试题(含答案无听力原文及音频)
- 黑龙江省大庆市肇源县联盟学校2024-2025学年六年级上学期期中地理试题(含答案)
- 2024秋湖北省当阳市实验初级中学期中质量监测九年级物理试题人教版
- 2024年湖北省公务员考试《行测》真题及答案解析
- 微景观制作教案PPT课件
- 洁净手术室管理制度
- 工程变更表(标准模版)
- 外墙风貌改造施工组织设计方案
- 总结程控器工作原理LFL
- 三菱变频器fr a700使用手册
- 三重一大 流程图
- 三菱PLC基本指令完整PPT课件
- 设施规划与物流系统设计试卷
- 集团师带徒管理办法
- 工程项目管理课程设计的设计报告
评论
0/150
提交评论