山东省济南市市中区实验中学2024届数学高一上期末经典试题含解析_第1页
山东省济南市市中区实验中学2024届数学高一上期末经典试题含解析_第2页
山东省济南市市中区实验中学2024届数学高一上期末经典试题含解析_第3页
山东省济南市市中区实验中学2024届数学高一上期末经典试题含解析_第4页
山东省济南市市中区实验中学2024届数学高一上期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市市中区实验中学2024届数学高一上期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.幂函数的图象不过原点,则()A. B.C.或 D.2.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.3.函数的零点所在区间是A. B.C. D.4.已知是定义在R上的奇函数,在区间上为增函数,则不等式的解集为()A. B.C. D.5.下列函数在其定义域内既是奇函数,又是增函数的是A. B.C. D.6.为参加学校运动会,某班要从甲,乙,丙,丁四位女同学中随机选出两位同学担任护旗手,那么甲同学被选中的概率是()A. B.C. D.7.函数的定义域是()A. B.C. D.(0,4)8.已知为三角形内角,且,若,则关于的形状的判断,正确的是A.直角三角形 B.锐角三角形C.钝角三角形 D.三种形状都有可能9.将函数的周期扩大到原来的2倍,再将函数图象左移,得到图象对应解析式是()A. B.C. D.10.命题“”否定是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域为____12.已知函数的图象恒过点P,若点P在角的终边上,则_________13.已知,若,则_______;若,则实数的取值范围是__________14.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.15.已知y=f(x)是奇函数,当x≥0时,,则f(-8)的值是____.16.已知向量,,若,则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,求函数的零点;(2)若不等式在时恒成立,求实数k的取值范围.18.女排世界杯比赛采用局胜制,前局比赛采用分制,每个队只有赢得至少分,并同时超过对方分时,才胜局;在决胜局(第五局)采用分制,每个队只有赢得至少分,并领先对方分为胜.在每局比赛中,发球方赢得此球后可得分,并获得下一球的发球权,否则交换发球权,并且对方得分.现有甲乙两队进行排球比赛.(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来的每局比赛甲队获胜的概率为,求甲队最后赢得整场比赛的概率;(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各分,且甲已获得下一发球权.若甲发球时甲赢分的概率为,乙发球时甲赢分的概率为,得分者获得下一个球的发球权.求甲队在个球以内(含个球)赢得整场比赛的概率.19.已知函数.(1)若在上的最大值为,求的值;(2)若为的零点,求证:.20.已知函数(1)求的值(2)求函数的最小正周期及其图像的对称轴方程(3)对于任意,均有成立,求实数的取值范围21.函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示(1)求A,ω,φ的值;(2)求图中a,b的值及函数f(x)的递增区间;(3)若α∈[0,π],且f(α)=,求α的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据幂函数的性质求参数.【题目详解】是幂函数,解得或或幂函数的图象不过原点,即故选:B2、D【解题分析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.3、C【解题分析】根据函数零点存在性定理进行判断即可【题目详解】∵,,∴,∴函数在区间(2,3)上存在零点故选C【题目点拨】求解函数零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件4、C【解题分析】由奇函数知,再结合单调性及得,解不等式即可.【题目详解】由题意知:,又在区间上为增函数,当时,,当时,,由可得,解得.故选:C.5、D【解题分析】分析:利用基本初等函数的单调性和奇偶性的定义,判定各选项中的函数是否满足条件即可.详解:对于A中,函数是定义域内的非奇非偶函数,所以不满足题意;对于B中,函数是定义域内的非奇非偶函数,所以不满足题意;对于C中,函数是定义域内的偶函数,所以不满足题意;对于D中,函数是定义域内的奇函数,也是增函数,所以满足题意,故选D.点睛:本题主要考查了基本初等函数的单调性与奇偶性的判定问题,其中熟记基本初等函数的单调性和奇偶性的判定方法是解答的关键,着重考查了推理与论证能力.6、C【解题分析】求出从甲、乙、丙、丁4位女同学中随机选出2位同学担任护旗手的基本事件,甲被选中的基本事件,即可求出甲被选中的概率【题目详解】解:从甲、乙、丙、丁4位同学中随机选出2位担任护旗手,共有种方法,甲被选中,共有3种方法,甲被选中的概率是故选:C【题目点拨】本题考查通过组合的应用求基本事件和古典概型求概率,考查学生的计算能力,比较基础7、C【解题分析】根据对数函数的单调性,结合二次根式的性质进行求解即可.【题目详解】由,故选:C8、C【解题分析】利用同角平方关系可得,,结合可得,从而可得的取值范围,进而可判断三角形的形状【题目详解】解:,,为三角形内角,,为钝角,即三角形为钝角三角形故选C【题目点拨】本题主要考查了利用同角平方关系的应用,其关键是变形之后从的符号中判断的取值范围,属于三角函数基本技巧的运用9、D【解题分析】直接利用函数图象的与平移变换求出函数图象对应解析式【题目详解】解:将函数y=5sin(﹣3x)的周期扩大为原来的2倍,得到函数y=5sin(x),再将函数图象左移,得到函数y=5sin[(x)]=5sin()=5sin()故选D【题目点拨】本题考查函数y=Asin(ωx+φ)的图象变换,属于基础题.10、A【解题分析】根据全称命题的否定为特称命题,即可得到答案【题目详解】全称命题的否定为特称命题,命题“”的否定是,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据给定条件列出使函数f(log2x)有意义的不等式组,再求出其解集即可.【题目详解】因函数f(x)的定义域是[-1,1],则在f(log2x)中,必有,解不等式可得:,即,所以函数f(log2x)的定义域为.故答案为:12、【解题分析】由对数函数的性质可得点的坐标,由三角函数的定义求得与的值,再由正弦的二倍角公式即可求解.【题目详解】易知恒过点,即,因为点在角的终边上,所以,所以,,所以,故答案为:.13、①.②.【解题分析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【题目详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,14、或(答案不唯一)【解题分析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【题目详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【题目点拨】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.15、【解题分析】先求,再根据奇函数求【题目详解】,因为为奇函数,所以故答案为:【题目点拨】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.16、【解题分析】因为,,,所以,解得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)由对数函数的性质可得,再解含指数的一元二次方程,结合指数的性质即可得解.(2)由题设有在上恒成立,判断的单调性并确定其值域,即可求k的范围.【小问1详解】由题设,令,则,∴,可得或(舍),∴,故的零点为.【小问2详解】由,则,即在上恒成立,∵在上均递减,∴在上递减,则,∴k的取值范围为.18、(1);(2)【解题分析】(1)先确定甲队最后赢得整场比赛的情况,再分别根据独立事件概率乘法公式求解,最后根据互斥事件概率加法公式得结果;(2)先根据比赛规则确定x的取值,再确定甲赢得整场比赛的情况,最后根据独立事件概率乘法公式以及互斥事件概率加法公式得结果.【题目详解】(1)甲队最后赢得整场比赛的情况为第四局赢或第四局输第五局赢,所以甲队最后赢得整场比赛的概率为,(2)设甲队x个球后赢得比赛,根据比赛规则,x的取值只能为2或4,对应比分为两队打了2个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲得分,此时概率为;两队打了4个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲失分,打第三个球乙发球甲得分,打第四个球甲发球甲得分,或打第一个球甲发球甲失分,打第二个球乙发球甲得分,打第三个球甲发球甲得分,打第四个球甲发球甲得分,此时概率为.故所求概率为:19、(1)2;(2)详见解析.【解题分析】(1)易知函数和在上递增,从而在上递增,根据在上的最大值为求解.(2)根据为的零点,得到,由零点存在定理知,然后利用指数和对数互化,将问题转化为,利用基本不等式证明.【题目详解】(1)因为函数和在上递增,所以在上递增,又因为在上的最大值为,所以,解得;(2)因为为的零点,所以,即,又当时,,当时,,所以,因为,等价于,等价于,等价于,而,令,所以,所以成立,所以.【题目点拨】关键点点睛:本题关键是由指数和对数的互化结合,将问题转化为证成20、(1)0;(2);(3).【解题分析】(1)由三角函数的和差公式,倍角公式,辅助角公式化简原式,带入求值即可.(2)由化简后的表达式代入公式即可求的.(3)恒成立问题,第一步求出函数的单调区间,结合函数性质即可解得.【小问1详解】化简如下:.【小问2详解】由(1)可知,周期,对称轴.【小问3详解】,所以任意,均有,解出函数的单调性增区间,,所以在递增,成立,递减,由对称性可知,所以,所以21、(1);(2),递增区间为;(3)或.【解题分析】(1)利用函数图像可直接得出周期T和A,再利用,求出,然后利用待定系数法直接得出的值(2)通过第一问求得的值可得到的函数解析式,令,再根据a的位置确定出a的值;令得到的函数值即为b的值;利用正弦函数单调增区间即可求出函数的单调增区间(3)令结合即可求得的取值【题目详解】解:(1)由图象知A=2,=-(-)=,得T=π,即=2,得ω=1,又f(-)=2sin[2×(-)+φ]=-2,得sin(-+φ)=-1,即-+φ=-+2kπ,即ω=+2kπ,k∈Z,∵|φ|<,∴当k=0时,φ=,即A=2,ω=1,φ=;(2)a=--=--=-,b=f(0)=2sin=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论