版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省成都市郫都区高一数学第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则的值为()A.0 B.1C.2 D.32.方程的零点所在的区间为()A. B.C. D.3.符号函数是一个很有用的函数,符号函数能够把函数的符号析离出来,其表达式为若定义在上的奇函数,当时,,则的图象是()A. B.C. D.4.已知,则()A. B.C. D.5.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.6.已知函数在R上是单调函数,则的解析式可能为()A. B.C. D.7.设向量不共线,向量与共线,则实数()A. B.C.1 D.28.已知全集,集合1,2,3,,,则A.1, B.C. D.3,9.“当时,幂函数为减函数”是“或2”的()条件A.既不充分也不必要 B.必要不充分C.充分不必要 D.充要10.如图,在平面四边形ABCD,,,,.若点E为边上的动点,则的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在上的奇函数,当时,为常数),则=_________.12.若函数的定义域为R,则实数m的取值范围是______13.已知圆及直线,当直线被圆截得的弦长为时,的值等于________.14.某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为______万元.15.实数271316.函数f(x)=log2(x2-5),则f(3)=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图(1)求a的值以及这100人中测试成绩在[80,85)的人数;(2)估计全市老师测试成绩的平均数(同组中的每个数据都用该组区间中点值代替)和第50%分数位(保留两位小数);(3)若要从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率18.已知函数且.(1)若,求的值;(2)若在上的最大值为,求的值.19.函数y=cosx+sinx的最小正周期、最大值、最小值.20.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?21.已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据分段函数,结合指数,对数运算计算即可得答案.【题目详解】解:由于,所以.故选:C.【题目点拨】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.2、C【解题分析】分析函数的单调性,利用零点存在定理可得出结论.【题目详解】因为函数、均为上的增函数,故函数在上也为增函数,因为,,,,由零点存在定理可知,函数的零点所在的区间为.故选:C.3、C【解题分析】根据函数的奇偶性画出的图象,结合的知识确定正确答案.【题目详解】依题意,是定义在上的奇函数,图象关于原点对称.当时,,结合的奇偶性,作出的大致图象如下图所示,根据的定义可知,选项C符合题意.故选:C4、C【解题分析】因为,所以;因为,,所以,所以.选C5、D【解题分析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【题目详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.6、C【解题分析】根据条件可知当时,为增函数,在在为增函数,且,结合各选项进行分析判断即可【题目详解】当时,为增函数,则在上为增函数,且,A.在上为增函数,,故不符合条件;B.为减函数,故不符合条件;C.在上为增函数,,故符合条件;D.为减函数,故不符合条件.故选:C.7、A【解题分析】由向量共线定理求解【题目详解】因为向量与共线,所以存在实数,使得,又向量不共线,所以,解得故选:A8、C【解题分析】可求出集合B,然后进行交集的运算,即可求解,得到答案【题目详解】由题意,可得集合,又由,所以故选C【题目点拨】本题主要考查了集合的交集运算,其中解答中正确求解集合B,熟记集合的交集运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解题分析】根据幂函数的定义和性质,结合充分性、必要性的定义进行求解即可.【题目详解】当时,幂函数为减函数,所以有,所以幂函数为减函数”是“或2”的充分不必要条件,故选:C10、A【解题分析】由已知条件可得,设,则,由,展开后,利用二次函数性质求解即可.【题目详解】∵,因为,,,所以,连接,因为,所以≌,所以,所以,则,设,则,∴,,,,所以,因为,所以.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先由函数奇偶性,结合题意求出,计算出,即可得出结果.【题目详解】因为为定义在上的奇函数,当时,,则,解得,则,所以,因此.故答案为:.12、【解题分析】由题意得到时,恒成立,然后根据当和时,进行分类讨论即可求出结果.详解】依题意,当时,恒成立当时,,符合题意;当时,则,即解得,综上,实数m的取值范围是,故答案:13、【解题分析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可【题目详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式可得,结合,所以【题目点拨】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等14、34【解题分析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【题目详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.15、1【解题分析】直接根据指数幂运算与对数运算求解即可.【题目详解】解:27故答案为:116、2【解题分析】利用对数性质及运算法则直接求解【题目详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【题目点拨】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);20;(2)分,76.67分(3)【解题分析】(1)根据频率之和为1,可求得a的值,根据频数的计算可求得测试成绩在[80,85)的人数;(2)根据频率分布直方图可计算中位数,即可求得第50%分数位;(3)列举出所有可能的抽法,再列出第四组至少有1名老师被抽到可能情况,根据古典概型的概率公式求得答案.【小问1详解】由题意得:,解得;这100人中测试成绩在[80,85)的人数为(人);【小问2详解】平均数为:(分),设中位数为m,且,则,解得,故第50%分数位76.67分;【小问3详解】第三组频率为,第四组频率为,第五组频率为,故从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,三组人数为3人,2人和1人,记第三组抽取人为,第四组抽取的人为,第五组抽取的人为,则抽取2人的所有情况如下:共15种,其中第四组至少有1名老师被抽到的抽法有共9种,故第四组至少有1名老师被抽到的概率为.18、(1);(2)或.【解题分析】(1)根据函数奇偶性的定义判断是奇函数,再由即可求解;(2)讨论和时,函数在上的单调性,根据单调性求出最值列方程,解方程可得的值.【小问1详解】因为的定义域为关于原点对称,,所以为奇函数,故.【小问2详解】,若,则单调递减,单调递增,可得为减函数,当时,,解得:,符合题意;若,则单调递增,单调递减,可得为增函数,当时,解得:,符合题意,综上所述:的值为或.19、,2,.【解题分析】先对函数进行化简,然后结合性质可求.【题目详解】;最小正周期为;当,即时,取到最大值;当,即时,取到最小值;【题目点拨】本题主要考查三角函数的性质,一般是把目标式化简为标准型,然后结合性质求解,侧重考查数学抽象的核心素养.20、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解题分析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由题意可知上述方程的解是,代入上述方程得答:政府应该对每件商品征7.5元.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年土地整治项目土地抵押合同范例3篇
- 2024年某物业管理公司与某小区关于物业服务合同
- 房屋租赁合同模板合集五篇
- 七年级第一学期生物教案模板
- 跟岗实习工作总结范文
- 举行春游活动方案
- 配音比赛策划书
- 店长述职报告15篇
- 学生竞选演讲稿怎么写才能吸引人?【5篇】
- 投标承诺书集锦15篇
- 康复治疗技术历年真题单选题100道及答案
- 2024年领导干部和公务员法律法规应知应会知识考试题库
- 《建筑工程施工许可管理办法》2021年9月28日修订
- 医生给病人免责协议书(2篇)
- 【格力电器应收账款管理存在的问题及优化建议探析(论文)12000字】
- (完整版)《美国文学》期末考试试卷(A卷)
- 透镜及其应用常考易错陷阱分析-2024年中考物理考试易错题
- 记账实操-红十字会的会计账务处理分录
- 空运陆运操作岗位招聘面试题及回答建议(某大型国企)2024年
- 管径的选择和管道压力降的计算
- 《元旦新气象梦想再起航》主题班会
评论
0/150
提交评论