2024届黑龙江七台河市数学高一上期末学业水平测试试题含解析_第1页
2024届黑龙江七台河市数学高一上期末学业水平测试试题含解析_第2页
2024届黑龙江七台河市数学高一上期末学业水平测试试题含解析_第3页
2024届黑龙江七台河市数学高一上期末学业水平测试试题含解析_第4页
2024届黑龙江七台河市数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江七台河市数学高一上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,集合,则A. B.C. D.2.下列四个函数中,以π为最小正周期,且在区间上单调递减的是()A. B.C. D.3.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3C.92cm3 D.84cm35.已知直线过,两点,则直线的斜率为A. B.C. D.6.若,,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角7.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.8.已知,则它们的大小关系是()A. B.C. D.9.若是钝角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角10.已知函数,若方程有8个相异实根,则实数b的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若a∈{1,a2﹣2a+2},则实数a的值为___________.12.直线与直线平行,则实数的值为_______.13.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________14.已知满足任意都有成立,那么的取值范围是___________.15.已知,则的值为________16.若圆心角为的扇形的弧长为,则该扇形面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)若,求;(2)若,求实数的取值范围.18.设函数的定义域为A,集合.(1);(2)若集合是的子集,求实数a的取值范围.19.2022年是苏颂诞辰1001周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,退水壶内水面位于枢轮中心下方1.19米处,当点P从枢轮最高处随枢轮开始转动时,打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动.以枢轮中心为原点,水平线为x轴建立平面直角坐标系,令P点纵坐标为,水面纵坐标为,P点转动经过的时间为x分钟.(参考数据:,,)(1)求,关于x的函数关系式;(2)求P点进入水中所用时间的最小值(单位:分钟,结果取整数)20.已知函数,(1)若,求函数的值域;(2)已知,且对任意的,不等式恒成立,求的取值范围21.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由集合,根据补集和并集定义即可求解.【题目详解】因为,即集合由补集的运算可知根据并集定义可得故选:C【题目点拨】本题考查了补集和并集的简单运算,属于基础题.2、B【解题分析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断【题目详解】对于A,最小正周期为2π,在区间上单调递减,不合题意;对于B,最小正周期为π,在区间上单调递减,符合题意;对于C,最小正周期为2π,在区间上单调递减,不合题意;对于D,最小正周期为π,在区间上单调递增,不合题意;故选:B.3、B【解题分析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【题目详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.4、B【解题分析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角)∴该几何体的体积V=6×6×3﹣=100故选B考点:由三视图求面积、体积5、C【解题分析】由斜率的计算公式计算即可【题目详解】因为直线过,两点,所以直线的斜率为.【题目点拨】本题考查已知两点坐标求直线斜率问题,属于基础题6、B【解题分析】根据,可判断可能在的象限,根据,可判断可能在的象限,综合分析,即可得答案.【题目详解】由,可得的终边在第一象限或第二象限或与y轴正半轴重合,由,可得的终边在第二象限或第四象限,因为,同时成立,所以是第二象限角.故选:B7、D【解题分析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【题目详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【题目点拨】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题8、B【解题分析】根据幂函数、指数函数性质判断大小关系.【题目详解】由,所以.故选:B9、D【解题分析】由求出,结合不等式性质即可求解.【题目详解】,,,在第四象限.故选:D10、B【解题分析】画出的图象,根据方程有个相异的实根列不等式,由此求得的取值范围.【题目详解】画出函数的图象如图所示,由题意知,当时,;当时,.令,则原方程化为.∵方程有8个相异实根,∴关于t的方程在上有两个不等实根.令,,∴,解得.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】利用集合的互异性,分类讨论即可求解【题目详解】因为a∈{1,a2﹣2a+2},则:a=1或a=a2﹣2a+2,当a=1时:a2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2【题目点拨】本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题12、【解题分析】根据直线一般式,两直线平行则有,代入即可求解.【题目详解】由题意,直线与直线平行,则有故答案为:【题目点拨】本题考查直线一般式方程下的平行公式,属于基础题.13、2.【解题分析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、14、【解题分析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【题目详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.15、【解题分析】∵,∴,解得答案:16、【解题分析】根据扇形面积公式计算即可.【题目详解】设弧长为,半径为,为圆心角,所以,由扇形面积公式得.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据并集的概念运算可得结果;(2)分类讨论集合是否为空集,根据交集结果列式可得答案.【题目详解】(1)当时,,所以.(2)因为,(i)当,即时,,符合题意;(ii)当时,,解得或.综上所述,实数的取值范围是.【题目点拨】易错点点睛:容易漏掉集合为空集的情况.18、(1);(2).【解题分析】(1)由函数的定义域、指数函数的性质可得,,再由集合的并集运算即可得解;(2)由集合的交集运算可得,再由集合的关系可得,即可得解.【题目详解】由可得,所以,,(1)所以;(2)因为,所以,所以,解得,所以实数a的取值范围为.【题目点拨】本题考查了函数定义域及指数不等式的求解,考查了集合的运算及根据集合间的关系求参数,属于基础题.19、(1),(2)13分钟【解题分析】(1)按照题目所给定的坐标系分别写出和的方程即可;(2)根据零点存在定理判断即可.【小问1详解】可设,∵转动的周期为30分钟,∴,∵枢轮的直径为3.4米,∴,∵点P的初始位置为最高点,∴,∴,∵退水壶内水面位于枢轮中心下方1.19米处,∴水面的初始纵坐标为,∵水位以每分钟0.017米速度下降,∴;【小问2详解】P点进入水中,则,即∴作出和的大致图像,显然在内存在一个交点令,∵,,∴P点进入水中所用时间的最小值为13分钟;综上,,,P点进入水中所用时间的最小值为13分钟.20、(1);(2)当时,;当且时,.【解题分析】(1)由题设,令则,即可求值域.(2)令,将问题转化为在上恒成立,再应用对勾函数的性质,讨论、,分别求出的取值范围【小问1详解】因为,设,则,因为,所以,即当时,,当或时,,所以的值域为.【小问2详解】因为,所以,又可化成,因为,所以,所以,令,则,,依题意,时,恒成立,设,,当时,当且仅当,,故;当,时,在上单调递增,当时,,故,综上所述:当时,;当且时,.【题目点拨】关键点点睛:应用换元法及参变分离,将问题转化为二次函数求值域,及由不等式恒成立、对勾函数的最值求参数范围.21、(1)(2)图象见解析,所有零点之和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论