版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年河北省邢台市县会宁中学高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为()A.4 B. C. D.参考答案:B【分析】利用可得对角线的长.【详解】设长方体的三条棱的长分别为:,则,可得对角线的长为.故选:B.【点睛】设长方体的棱长和为,表面积为,对角线的长为,则,解题中注意各代数式之间的关系.2.若||=||=2||,则向量+与的夹角为()A. B. C. D.参考答案:B【考点】数量积表示两个向量的夹角;向量的模.【分析】将已知式子平方可得=0,代入向量的夹角公式可得其余弦值,结合夹角的范围可得答案.【解答】解:∵,∴,两边平方可得=,化简可得=0,设向量与的夹角为θ则可得cosθ====,又θ∈[0,π],故θ=故选B.3.已知i是虚数单位,则=()A.1B.iC.﹣iD.﹣1参考答案:D考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:==﹣1,故选:D.点评:本题考查了复数的运算法则,属于基础题.4.已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是等腰直角三角形,则这个椭圆的离心率是(
)A.
B.
C.
D.参考答案:C5.设函数,曲线在点处的切线方程为(
)A.
B.
C.
D.参考答案:B6.下列函数中,最小值为2的函数是A.
B.C.
D.参考答案:C7.若满足则下列不等式恒成立的是(
)(A)
(B)
(C)
(D)参考答案:D试题分析:作出不等式所表示的平面区域,显然选项A,B错;由线性规划易得的取值范围为,故不成立;在B处取得最小,故考点:线性规划8.用数学归纳法证明:“,在验证n=1时,左端计算所得的项为(
)A.1
B.
C.
D.参考答案:C9.定义在上的函数,如果存在函数为常数,使得对一切实数都成立,则称为函数的一个“承托函数”.现有如下命题:①对给定的函数,其承托函数可能不存在,也可能有无数个;②为函数的一个承托函数;③定义域和值域都是的函数不存在承托函数.其中正确的命题是
(
)A.①
B.②
C.①③
D.②③参考答案:A略10.“log2a>log2b”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】2L:必要条件、充分条件与充要条件的判断.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵.反之不成立,可能0>a>b.故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.已知不等式,若对任意且,该不等式恒成立,则实数的取值范围是_____________.参考答案:12.若集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},则a的值是.参考答案:﹣3【考点】集合关系中的参数取值问题.【分析】由题意可得9∈A,且9∈B,分2a﹣1=9和a2=9两种情况,求得a的值,然后验证即可.【解答】解:由题意可得9∈A,且9∈B.①当2a﹣1=9时,a=5,此时A={﹣4,9,25},B={0,﹣4,9},A∩B={﹣4,9},不满足A∩B={9},故舍去.②当a2=9时,解得a=3,或a=﹣3.若a=3,A={﹣4,5,9},B={﹣2,﹣2,9},集合B不满足元素的互异性,故舍去.若a=﹣3,A={﹣4,﹣7,9},B={﹣8,4,9},满足A∩B={9}.综上可得,a=﹣3,故答案为﹣3.13.若关于的不等式在实数集上的解集为,则的取值范围为_______.参考答案:略14.若是和的等比中项,则圆锥曲线的离心率为
参考答案:或略15.圆上到直线距离最近的点的坐标是___________.参考答案:16.(几何证明选做题)如图所示,、是半径为的圆的两条弦,它们相交于的中点,,,则
.参考答案:略17.在中,角所对边分别为,且,面
积,则=
.参考答案:5略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(16分)设函数。(Ⅰ)求的单调区间和极值;(Ⅱ)若对一切,,求的最大值。参考答案:解析:(Ⅰ),当时,;当时,;故在单调增加,在单调减少。的极小值,极大值(Ⅱ)由知
即
由此及(Ⅰ)知的最小值为,最大值为因此对一切,的充要条件是,
即,满足约束条件,由线性规划得,的最大值为5.
19.(本小题满分13分)若由数列生成的数列满足对任意的其中,则称数列为“Z数列”。
(I)在数列中,已知,试判断数列是否为“Z数列”;
(II)若数列是“Z数列”,
(III)若数列是“Z数列”,设求证参考答案:解:(I)因为所以
………………2分所以所以是“Z数列”。
………………4分
(II)因为,
………………6分所以,
又
………………8分
(III)因为,
………………10分又,所以
………………12分所以
………………13分
略20.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.(i)利用该正态分布,求;(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求.附:≈12.2.若~,则=0.6826,=0.9544.参考答案:(Ⅰ)抽取产品质量指标值的样本平均数和样本方差分别为
…………6分(Ⅱ)(ⅰ)由(Ⅰ)知~,从而
………………9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826依题意知,所以
………12分21.如图,已知,,,,F为CD的中点,(Ⅰ)求证:(Ⅱ)若,求二面角的余弦值.参考答案:略22.某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在[100,120)内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.表1:甲套设备的样本的频数分布表质量指标值[95,100)[100,105)[105,110)[110,115)[115,120)[120,125]频数14192051
图1:乙套设备的样本的频率分布直方图(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
甲套设备乙套设备合计合格品
不合格品
合计
(2)根据表1和图1,对两套设备的优劣进行比较;(3)将频率视为概率.若从甲套设备生产的大量产品中,随机抽取3件产品,记抽到的不合格品的个数为X,求X的期望E(X).附:P(K2≥k0)0.150.100.0500.0250.010k02.0722.7063.8415.0246.635
.参考答案:(1)见解析;(2)见解析;(3)试题分析:(1)根据表1和图1即可完成填表,再由将数据代入计算得即把握认为产品的质量指标值与甲、乙两套设备的选择有关(2)根据题意计算甲、乙两套设备生产的合格品的概率,乙套设备生产的产品的质量指标值与甲套设备相比较为分散,从而做出判断(3)根据题意知满足,代入即可求得结果解析:(1)根据表1和图1得到列联表
甲套设备乙套设备合计合格品484391不合格品279合计5050100
将列联表中的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024榨菜出口贸易合同范本(欧盟市场)3篇
- 自动机械课程设计 糖果
- 2025版电力施工合同纠纷解决分包合同2篇
- 2024年联合研发保密规定
- 2024年酒店弱电改造及施工服务协议3篇
- 2024年陆上货运托运协议标准格式
- 2024年项目融资补充协议3篇
- 2024年金融衍生品市场融资咨询与服务合同3篇
- 美术假期班特色课程设计
- 二零二五年度体育赛事赞助合同(合同标的:某国际马拉松赛事赞助)3篇
- 《预防未成年人犯罪》课件(图文)
- 2024年浙江省能源集团应届生招聘高频难、易错点500题模拟试题附带答案详解
- ☆问题解决策略:直观分析 教案 2024-2025学年北师大版七年级数学上册
- 四种“类碰撞”典型模型研究(讲义)(解析版)-2025年高考物理一轮复习(新教材新高考)
- 青岛版科学三年级上册全册课件教材
- Project项目管理(从菜鸟到实战高手)
- 6S视觉管理之定置划线颜色管理及标准样式
- 2024国家开放大学电大本科《西方行政学说》期末试题及答案
- 四年级数学(除数是两位数)计算题专项练习及答案
- DL∕T 5783-2019 水电水利地下工程地质超前预报技术规程
- 2024-2030年中国电子级四氟化硅行业风险评估及未来全景深度解析研究报告
评论
0/150
提交评论