版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁市、玉林市、贵港市等2024届高一上数学期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“,”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知,则的最小值为()A. B.2C. D.43.已知集合,,有以下结论:①;②;③.其中错误的是()A.①③ B.②③C.①② D.①②③4.若函数在区间上单调递减,则实数满足的条件是A. B.C. D.5.已知函数,,则的零点所在的区间是A. B.C. D.6.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.47.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C. D.8.对于实数a,b,c下列命题中的真命题是()A.若a>b,则ac2>bc2 B.若a>b>0,则C.若a<b<0,则 D.若a>b,,则a>0,b<09.已知函数,若函数在上有3个零点,则m的取值范围为()A. B.C. D.10.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的偶函数,当时,若直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,则的取值范围是___________.12.已知函数,则的单调递增区间是______13.函数的图像与直线y=a在(0,)上有三个交点,其横坐标分别为,,,则的取值范围为_______.14.已知集合,则的元素个数为___________.15.幂函数的图象经过点,则________16.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的值;(2)设,求的值.18.已知,,,,求.19.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:年份2015201620172018投资成本x35917…年利润y1234…给出以下3个函数模型:①;②y=abx(a≠0,b>0,且b≠1);③y=loga(x+b)(a>0,且a≠1)(1)选择一个恰当函数模型来描述x,y之间的关系,并求出其解析式;(2)试判断该企业年利润超过6百万元时,该企业是否要考虑转型20.某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本万元.(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少多少?21.已知两点,,两直线:,:求:(1)过点且与直线平行的直线方程;(2)过线段的中点以及直线与的交点的直线方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【题目详解】,时,,,时,,所以“,”是“”的充分而不必要条件,故选:.2、C【解题分析】根据给定条件利用均值不等式直接计算作答.【题目详解】因为,则,当且仅当,即时取“=”,所以的最小值为.故选:C3、C【解题分析】解出不等式,得到集合,然后逐一判断即可.【题目详解】由可得所以,故①错;,②错;,③对,故选:C4、A【解题分析】因为函数在区间上单调递减,所以时,恒成立,即,故选A.5、C【解题分析】由题意结合零点存在定理确定的零点所在的区间即可.【题目详解】由题意可知函数在上单调递减,且函数为连续函数,注意到,,,,结合函数零点存在定理可得的零点所在的区间是.本题选择C选项.【题目点拨】应用函数零点存在定理需要注意:一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f(x)在(a,b)上单调且f(a)f(b)<0,则f(x)在(a,b)上只有一个零点.6、B【解题分析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【题目详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B7、D【解题分析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【题目详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【题目点拨】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x不等式,属于基础题8、D【解题分析】逐一分析选项,得到正确答案.【题目详解】A.当时,,所以不正确;B.当时,,所以不正确;C.,当时,,,即,所以不正确;D.,,即,所以正确.故选D.【题目点拨】本题考查不等式性质的应用,比较两个数的大小,1.做差法比较;2.不等式性质比较;3.函数单调性比较.9、A【解题分析】画出函数图像,分解因式得到,有一个解故有两个解,根据图像得到答案.【题目详解】画出函数的图像,如图所示:当时,即,有一个解;则有两个解,根据图像知:故选:【题目点拨】本题考查了函数的零点问题,画出函数图像,分解因式是解题的关键.10、D【解题分析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【题目详解】变换到,需要向右平移个单位.故选:D【题目点拨】函数图像平移异名化同名的公式:,.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先作出函数的大致图象,由函数性质及图象可知八个根是两两关于轴对称的,因此分析可得,,进而将转化为形式,再数形结合,求得结果.【题目详解】作出函数的图象如图:直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,不妨设从左到右分别是,,,,,,,,则,由函数解析式以及图象可知:,即,同理:;由图象为偶函数,图象关于轴对称可知:,所以又因为是方程的两根,所以,而,所以,故,即,故答案为:12、【解题分析】函数是由和复合而成,分别判断两个函数的单调性,根据复合函数的单调性同增异减即可求解.【题目详解】函数是由和复合而成,因为为单调递增函数,对称轴为,开口向上,所以在上单调递减,在上单调递增,所以在上单调递减,在上单调递增,所以的单调递增区间为,故答案为:.13、【解题分析】由x∈(0,)求出,然后,画出正弦函数的大致图像,利用图像求解即可【题目详解】由题意因为x∈(0,),则,可画出函数大致的图则由图可知当时,方程有三个根,由解得,解得,且点与点关于直线对称,所以,点与点关于直线对称,故由图得,令,当为x∈(0,)时,解得或,所以,,,解得,,则,即.故答案为:【题目点拨】关键点睛:解题关键在于利用x∈(0,),则画出图像,并利用对称性求出答案14、5【解题分析】直接求出集合A、B,再求出,即可得到答案.【题目详解】因为集合,集合,所以,所以的元素个数为5.故答案为:5.15、【解题分析】设幂函数的解析式,然后代入求解析式,计算.【题目详解】设,则,解得,所以,得故答案为:16、【解题分析】利用函数的图象变换规律,先放缩变换,再平移变换,从而可得答案【题目详解】将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数的图象;再将的图象向左平移个单位,得到的图象对应的解析式是的图象,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)直接带入求值;(2)将和直接带入函数,会得到和的值,然后根据的值试题解析:解:(1)(2)考点:三角函数求值18、【解题分析】由已知结合商数关系、平方关系求,根据的范围及平方关系求,最后由结合差角余弦公式求值即可.【题目详解】因为,所以,又,可得或,而,所以,由,且,解得,因为,,则,所以,所以.19、(1)可用③来描述x,y之间的关系,y=log2(x-1);(2)该企业要考虑转型.【解题分析】(1)把(3,1),(5,2)分别代入三个函数中,求出函数解析式,然后再把x=9代入所求的解析式中,若y=3,则选择此模型;(2)由(1)可知函数模型为y=log2(x-1),令log2(x-1)>6,则x>65,再由与比较,可作出判断.【题目详解】(1)由表格中的数据可知,年利润y是随着投资成本x的递增而递增,而①是单调递减,所以不符合题意将(3,1),(5,2)代入y=abx(a≠0,b>0,且b≠1),得解得∴.当时,,不符合题意;将(3,1),(5,2)代入y=loga(x+b)(a>0,且a≠1),得解得∴y=log2(x-1)当x=9时,y=log28=3;当x=17时,y=log216=4.故可用③来描述x,y之间的关系.(也可通过画散点图或不同增长方式选择)(2)令log2(x-1)≥6,则x≥65.∵年利润<10%,∴该企业要考虑转型20、(1)300台;(2)90人.【解题分析】(1)每台机器人的平均成本为,化简后利用基本不等式求最小值;(2)由(1)可知,引进300台机器人,并根据分段函数求300台机器人日分拣量的最大值,根据最大值求若人工分拣,所需人数,再与30作差求解.【题目详解】(1)由总成本,可得每台机器人的平均成本.因为.当且仅当,即时,等号成立.∴若使每台机器人的平均成本最低,则应买300台.(2)引进机器人后,每台机器人的日平均分拣量为:当时,300台机器人的日平均分拣量为∴当时,日平均分拣量有最大值144000.当时,日平均分拣量为∴300台机器人的日平均分拣量的最大值为144000件.若传统人工分拣144000件,则需要人数为(人).∴日平均分拣量达最大值时,用人数量比引进机器人前的用人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度学习及自动驾驶应用 课件 第6、7章 基于CNN的自动驾驶场景语义分割理论与实践、循环神经网络及自动驾驶车辆换道行为预测
- 污水处理设施管网配套设施合同
- 环保工程合同模板
- 物流配送计划生育承诺书模板
- 知识产权许可使用合同解除协议
- 移动办公通讯实施方案
- 企业员工道德提案管理办法
- 投资权益协议书
- 亲子园幼师聘用合同细则
- 物流公司承运商安全规范
- 烘干设备购销合同模板
- 2024年国际贸易佣金居间服务协议
- 2024年工程劳务分包合同范本(三篇)
- 2024年医院食堂承包合同参考模板(五篇)
- 广东省深圳实验学校中学部2024-2025学年七年级数学上学期期中考试试卷
- 江苏省南京市六校2024-2025学年高一上学期期中联合调研考试 数学 含答案
- 老师实习报告(6篇)
- 电器集团外协、外购件检验作业指导书
- 国开学习网《幼儿园课程与活动设计》期末大作业答案(第7套)
- 第25课《刘姥姥进大观园》(导学案)(学生版) 2024-2025学年九年级语文上册同步课堂(统编版)(学生专用)
- 美容院翻新合同协议书
评论
0/150
提交评论