版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市铜梁中学等七校高一上数学期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.2.下列函数中,图象的一部分如图所示的是()A. B.C. D.3.若“”是“”的充分不必要条件,则()A. B.C. D.4.设函数的定义域,函数的定义域为,则()A. B.C. D.5.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.设全集,集合,则()A.{3,5} B.{2,4}C.{1,2,3,4,5} D.{2,3,4,5,6}7.若的外接圆的圆心为O,半径为4,,则在方向上的投影为()A.4 B.C. D.18.如图,在平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的表面积为()A. B.C. D.9.已知,若不等式恒成立,则的最大值为()A.13 B.14C.15 D.1610.如果幂函数的图象经过点,则在定义域内A.为增函数 B.为减函数C.有最小值 D.有最大值二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为______.12.集合,,则__________.13.若两个正实数,满足,且不等式恒成立,则实数的取值范围是__________14.已知的定义域为,那么a的取值范围为_________15.已知函数的图象如图所示,则函数的解析式为__________.16.计算______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△中,已知,直线经过点(Ⅰ)若直线:与线段交于点,且为△外心,求△的外接圆的方程;(Ⅱ)若直线方程为,且△的面积为,求点的坐标18.某生物研究者于元旦在湖中放入一些风眼莲(其覆盖面积为),这些风眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼莲的覆盖面积为,凤眼莲的覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型与)可供选择(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份.(参考数据:,)19.已知是第二象限,且,计算:(1);(2)20.对于函数,若,则称为的“不动点”,若,则称为的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为和,即,,那么,(1)求函数的“稳定点”;(2)求证:;(3)若,且,求实数的取值范围.21.运货卡车以千米/时的速度匀速行驶300千米,按交通法规限制(单位千米/时),假设汽车每小时耗油费用为元,司机的工资是每小时元.(不考虑其他因所素产生的费用)(1)求这次行车总费用(元)关于(千米/时)的表达式;(2)当为何值时,这次行车的总费用最低?求出最低费用的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由图观察出和后代入最高点,利用可得,进而得到解析式【题目详解】解:由图可知:,,,,代入点,得,,,,,,故选.【题目点拨】本题考查了由的部分图象确定其表达式,属基础题.2、D【解题分析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【题目详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D3、B【解题分析】转化“”是“”的充分不必要条件为,分析即得解【题目详解】由题意,“”是“”的充分不必要条件故故故选:B4、B【解题分析】求出两个函数的定义域后可求两者的交集.【题目详解】由得,由得,故,故选:B.【题目点拨】本题考查函数的定义域和集合的交,函数的定义域一般从以下几个方面考虑:(1)分式的分母不为零;(2)偶次根号(,为偶数)中,;(3)零的零次方没有意义;(4)对数的真数大于零,底数大于零且不为1.5、A【解题分析】根据两个命题中的取值范围,分析是否能得到pq和qp【题目详解】若x为自然数,则它必为整数,即p⇒q但x为整数不一定是自然数,如x=-2,即qp故p是q的充分不必要条件故选:A.6、D【解题分析】先求补集,再求并集.详解】,则.故选:D7、C【解题分析】过作的垂线,垂足为,分析条件可得,作出图分析结合投影的几何意义可进而可求得投影..【题目详解】过作的垂线,垂足为,则M为BC的中点,连接AM,由,可得,所以三点共线,即有,且.所以.在方向上的投影为,故选:C.8、B【解题分析】由题意,的中点就是球心,求出球的半径,即可得到球的表面积【题目详解】解:由题意,四面体顶点在同一个球面上,和都是直角三角形,所以的中点就是球心,所以,球的半径为:,所以球的表面积为:故选B【题目点拨】本题是基础题,考查四面体的外接球的表面积的求法,找出外接球的球心,是解题的关键,考查计算能力,空间想象能力9、D【解题分析】用分离参数法转化为恒成立,只需,再利用基本不等式求出的最小值即可.【题目详解】因为,所以,所以恒成立,只需因为,所以,当且仅当时,即时取等号.所以.即的最大值为16.故选:D10、C【解题分析】由幂函数的图象经过点,得到,由此能求出函数的单调性和最值【题目详解】解:幂函数的图象经过点,,解得,,在递减,在递增,有最小值,无最大值故选【题目点拨】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【题目详解】所以令,则因此当时,取最小值,故答案为:【题目点拨】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.12、【解题分析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【题目详解】因为,,所以.故答案为:【题目点拨】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.13、【解题分析】根据题意,只要即可,再根据基本不等式中的“”的妙用,求得,解不等式即可得解.【题目详解】根据题意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案为:14、【解题分析】根据题意可知,的解集为,由即可求出【题目详解】依题可知,的解集为,所以,解得故答案为:15、【解题分析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得.【题目详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.故答案为:.16、11【解题分析】进行分数指数幂和对数式的运算即可【题目详解】原式故答案为11【题目点拨】本题考查对数式和分数指数幂的运算,熟记运算性质,准确计算是关键,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)或【解题分析】(Ⅰ)先求出直线的方程,进而得到D点坐标,为直径长,从而得到△的外接圆的方程;(Ⅱ)由题意可得,,从而解得点的坐标【题目详解】(Ⅰ)解法一:由已知得,直线的方程为,即,联立方程组得:,解得,又,△的外接圆的半径为∴△的外接圆的方程为.解法二:由已知得,,且为△的外心,∴△为直角三角形,为线段的中点,∴圆心,圆的半径,∴△的外接圆的方程为.或线段即为△的外接圆的直径,故有△的外接圆的方程为,即(Ⅱ)设点的坐标为,由已知得,,所在直线方程,到直线的距离,①又点的坐标为满足方程,即②联立①②解得:或,∴点的坐标为或【题目点拨】本题考查了圆的方程,直线的交点,点到直线的距离,考查了逻辑推理能力与计算能力,属于基础题.18、(1)函数模型较为合适,且该函数模型的解析式为;(2)月份.【解题分析】(1)根据两个函数模型增长的快慢可知函数模型较为合适,将点、代入函数解析式,求出、的值,即可得出函数模型的解析式;(2)分析得出,解此不等式即可得出结论.【题目详解】(1)由题设可知,两个函数、)在上均为增函数,随着的增大,函数的值增加得越来越快,而函数的值增加得越来越慢,由于风眼莲在湖中的蔓延速度越来越快,故而函数模型满足要求.由题意可得,解得,,故该函数模型的解析式为;(2)当时,,故元旦放入凤眼莲的面积为,由,即,故,由于,故.因此,凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份是月份.【题目点拨】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性19、(1);(2).【解题分析】(1)首先根据诱导公式化简,再上下同时除以后,转化为正切表示的式子,求值;(2)首先利用诱导公式化简,再转化为齐次分式形式,转化为正切求值.【题目详解】(1)原式,上下同时除以后,得;(2)原式,上下同时除以后,得20、(1)“稳定点”;(2)见解析;(3)【解题分析】本题拿出一个概念来作为新型定义题,只需要去对定义的理解就好,要求函数的“稳定点”只需求方程中的值,即为“稳定点”若,有这是不动点的定义,此时得出,,如果,则直接满足.先求出即存在“不动点”的条件,同理取得到存在“稳定点”的条件,而两集合相等,即条件所求出的结果一直,对结果进行分类讨论.【题目详解】(1)由有,得:,所以函数的“稳定点”为;(2)证明:若,则,显然成立;若,设,有,则有,所以,故(3)因为,所以方程有实根,即有实根,所以或,解得又由得:即由(1)知,故方程左边含有因式所以,又,所以方程要么无实根,要么根是方程的解,当方程无实根时,或,即,当方程有实根时,则方程的根是方程的解,则有,代入方程得,故,将代入方程,得,所以.综上:的取值范围是.【题目点拨】作为新型定义题,题中需要求什么,我们就从条件中去得到相应的关系,比如本题中,求不动点,就去求;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年沪科新版九年级历史上册阶段测试试卷含答案280
- 2024年上外版八年级历史上册月考试卷含答案953
- 2024年木材雕刻艺术品制作木工合同范本3篇
- 机织物课程设计报告
- 插值算法课课程设计
- 2022-2023年浙江省杭州市余杭区六年级下册期中语文试卷及答案
- 燃气课程设计纸
- 2024年岳麓版必修3英语下册阶段测试试卷971
- 2024年沪教版第一册生物上册阶段测试试卷619
- 2025年小升初复习之小题狂练300题(选择题):介词(10题)
- 博物馆保安服务投标方案(技术方案)
- 中医师承指导老师学术思想
- 课程设计报告数据库原理与应用样本
- 2024年北京控股集团有限公司招聘笔试参考题库含答案解析
- (完整word版)体检报告单模版
- 2024年陕西航空职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 铣刨机操作规程范文
- 安徽省芜湖市2023-2024学年七年级上学期期末数学试卷(含答案)
- 《土壤中的钙素营养》课件
- 初中数学思想方法导引
- 江苏省南京市建邺区2023-2024学年五年级上学期期末数学试卷.1
评论
0/150
提交评论