版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省广元市万达中学、八二一中学高一数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的大小关系是()A. B.C. D.2.若集合,则集合()A. B.C. D.3.集合,,则间的关系是()A. B.C. D.4.不等式的解集为,则()A. B.C. D.5.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.6.已知函数的图象,给出以下四个论断①的图象关于直线对称②图象的一个对称中心为③在区间上是减函数④可由向左平移个单位以上四个论断中正确的个数为()A.3 B.2C.1 D.07.要得到函数的图象,只需将函数的图象向()平移()个单位长度A.左 B.右C.左 D.右8.函数y=sin(2x)的单调增区间是()A.,](k∈Z) B.,](k∈Z)C.,](k∈Z) D.,](k∈Z)9.设,则函数的零点所在的区间为()A. B.C. D.10.已知角的终边经过点,则A. B.C.-2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则____________.12.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围13.已知f(x)是定义在R上的奇函数且以6为周期,若f(2)=0,则f(x)在区间(0,10)内至少有________零点.14.已知函数,若a、b、c互不相等,且,则abc的取值范围是______15.若扇形的面积为,半径为1,则扇形的圆心角为___________.16.已知函数若方程恰有三个实数根,则实数的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求与平面所成角的大小.18.如图,直角梯形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,点E为线段BC的中点,点F在线段AD上,且EF∥AB,现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC,点P为几何体中线段AD的中点(Ⅰ)证明:平面ACD⊥平面ACF;(Ⅱ)证明:CD∥平面BPE19.记不等式的解集为A,不等式的解集为B.(1)当时,求;(2)若,求实数a的取值范围.20.已知,命题:,;命题:,.(1)若是真命题,求的最大值;(2)若是真命题,是假命题,求的取值范围.21.已知函数.(1)求函数的最小正周期及其单调递减区间;(2)若,是函数的零点,不写步骤,直接用列举法表示的值组成的集合.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用指数函数与对数函数的单调性,把各数与中间值0,1比较即得【题目详解】利用指数函数的单调性知:,即;利用指数函数的单调性知:,即;利用对数函数的单调性知:,即;所以故选:C2、D【解题分析】解方程,再求并集.【题目详解】故选:D.3、D【解题分析】解指数不等式和一元二次不等式得集合,再判断各选项【题目详解】由题意,或,所以,即故选:D【题目点拨】本题考查集合的运算与集合的关键,考查解一元二次不等式,指数不等式,掌握指数函数性质是解题关键4、A【解题分析】由不等式的解集为,得到是方程的两个根,由根与系数的关系求出,即可得到答案【题目详解】由题意,可得不等式的解集为,所以是方程的两个根,所以可得,,解得,,所以,故选:A5、A【解题分析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【题目详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【题目点拨】三角函数求最值或者求值域一定要先将函数化成的形函数.6、B【解题分析】利用代入检验法可判断①②③的正误,利用图象变换可判断④的正误.【题目详解】,故的图象关于直线对称,故①正确.,故的图象的对称中心不是,故②错误.,当,,而在为减函数,故在为减函数,故③正确.向左平移个单位后所得图象对应的解析式为,当时,此函数的函数值为,而,故与不是同一函数,故④错误.故选:B.7、C【解题分析】因为,由此可得结果.【题目详解】因为,所以其图象可由向左平移个单位长度得到.故选:C.8、D【解题分析】先将自变量的系数变为正数,再由三角函数的单调性得出自变量所满足的不等式,求解即可得出所要的单调递增区间【题目详解】y=sin(2x)=﹣sin(2x)令,k∈Z解得,k∈Z函数的递增区间是,](k∈Z)故选D【题目点拨】本题考查正弦函数的单调性,求解本题的关键有二,一是将自变量的系数为为正,二是根据正弦函数的单调性得出相位满足的取值范围,解题时不要忘记引入的参数的取值范围即k∈Z9、B【解题分析】根据的单调性,结合零点存在性定理,即可得出结论.【题目详解】在单调递增,且,根据零点存在性定理,得存在唯一的零点在区间上.故选:B【题目点拨】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题.10、B【解题分析】按三角函数的定义,有.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】依据分段函数定义去求的值即可.【题目详解】由,可得,则由,可得故答案为:12、(1)(2)【解题分析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是13、6【解题分析】直接利用f(x)的奇偶性和周期性求解.【题目详解】因为f(x)是定义在R上奇函数且以6为周期,所以f(x)=-f即f-x所以f(x)的图象关于3,0对称,且f3则f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在区间(0,10)内至少有6个零点.故答案为:6个零点14、【解题分析】画出函数的图象,根据互不相等,且,我们令,我们易根据对数的运算性质,及c的取值范围得到abc的取值范围,即可求解【题目详解】由函数函数,可得函数的图象,如图所示:若a,b,c互不相等,且,令,则,,故,故答案为【题目点拨】本题主要考查了对数函数图象与性质的综合应用,其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于中档试题15、【解题分析】直接根据扇形的面积公式计算可得答案【题目详解】设扇形的圆心角为,因为扇形的面积为,半径为1,所以.解得,故答案为:16、【解题分析】令f(t)=2,解出t,则f(x)=t,讨论k的符号,根据f(x)的函数图象得出t的范围即可【题目详解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)当k=0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,即f(f(x))﹣2=0无解,不符合题意;(2)当k>0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,f(x)无解,即f(f(x))﹣2=0无解,不符合题意;(3)当k<0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k综上,k的取值范围是(﹣1,]故答案为(﹣1,]【题目点拨】本题考查了函数零点个数与函数图象的关系,数形结合思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)连结与交于点,连结,由中位线定理可得,再根据线面平行的判定定理即可证明结果;(2)方法一:根据线面垂直的判定定理,可证明平面;取的中点,易证平面,所以即所求角,再根据直棱柱的有关性质求即可得到结果;方法二:根据线面垂直的判定定理,可证明平面;取的中点,易证平面;所以即与平面所成的角,再根据直棱柱的有关性质求即可得到结果.【小问1详解】证明:如图一,连结与交于点,连结.在中,、为中点,∴.又平面,平面,∴平面.图一【小问2详解】证明:(方法一)如图二,图二∵,为的中点,∴.又,,∴平面.取的中点,又为的中点,∴、、平行且相等,∴四边形是平行四边形,∴与平行且相等.又平面,∴平面,∴即所求角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设∴,,,.(方法二)如图三,图三∵,为的中点,∴.又,,∴平面.取的中点,则,∴平面.∴即与平面所成的角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设,∴,,∴.18、证明过程详见解析【解题分析】(Ⅰ)证明AF⊥平面EFDC,得出AF⊥CD;再由勾股定理证明FC⊥CD,即可证明CD⊥平面ACF,平面ACD⊥平面ACF;(Ⅱ)取DF的中点Q,连接QE、QP,证明BPQE四点共面,再证明CD∥EQ,从而证明CD∥平面EBPQ,即为CD∥平面BPE【题目详解】(Ⅰ)由题意知,四边形ABEF是正方形,∴AF⊥EF,又平面ABEF⊥平面EFDC,∴AF⊥平面EFDC,∴AF⊥CD;又FD=4,FC=AB=2,CD=AB=2,∴FD2=FC2+CD2,∴FC⊥CD;又FC∩AF=F,∴CD⊥平面ACF;又CD⊂平面ACD,∴平面ACD⊥平面ACF;(Ⅱ)如图所示,取DF的中点Q,连接QE、QP,则QP∥AF,又AF∥BE,∴PQ∥BF,∴BPQE四点共面;又EC=2,QD=DF=2,且DF∥EC,∴QD与EC平行且相等,∴QECD为平行四边形,∴CD∥EQ,又EQ⊂平面EBPQ,CD⊄平面EBPQ,∴CD∥平面EBPQ,即CD∥平面BPE【题目点拨】本题主要考查直线和平面平行与垂直的判定应用问题,也考查了平面与平面的垂直应用问题,是中档题19、(1)(2)【解题分析】(1)分别求出集合,再求并集即可.(2)分别求出集合和的补集,它们的交集不为空集,列出不等式求解.【题目详解】(1)当时,的解为或(2)a的取值范围为20、(1)1;(2).【解题分析】(1)根据题意可得,为真,令,只需即可求解.(2)根据题意可得与一真一假,当是真命题时,可得或,分别求出当真假或假真时的取值范围,最后取并集即可求解.【题目详解】解:(1)若命题:,为真,∴则令,,又∵,∴,∴的最大值为1.(2)因为是真命题,是假命题,所以与一真一假,当是真命题时,,解得或,当是真
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025委托加工合同书
- 建设年产8000台智能化高效节水喷灌设备项目建议书立项备案审批
- 2024年度天津市公共营养师之三级营养师真题练习试卷A卷附答案
- 2024年度天津市公共营养师之二级营养师每日一练试卷B卷含答案
- 2024年度四川省公共营养师之四级营养师综合练习试卷B卷附答案
- 2024年度四川省公共营养师之三级营养师能力检测试卷B卷附答案
- 2024年度四川省公共营养师之二级营养师高分通关题型题库附解析答案
- 2019-2025年中国真丝化纤纺织品制造行业市场调查研究及投资前景预测报告
- 2024-2025年中国频谱理疗仪电商市场运行态势及行业发展前景预测报告
- 2025年抛光腊项目可行性研究报告
- 埃森哲流程制造-智能工厂规划设计相关两份资料
- 国家开放大学电大《供应链管理》期末题库及答案
- 10万吨绿色航空煤油项目可行性研究报告写作模板-备案审批
- 物业服务水电维修方案
- 2024至2030年中国生活用纸机械行业市场深度分析及发展趋势预测报告
- 2024-2030年中国蔬菜种植市场发展方向及前景需求趋势报告
- 2024年水生产处理工(初级)职业技能鉴定考试题库(含答案)
- 劳动合同变更确认书
- 象棋培训机构合伙协议
- 2025届贵州遵义市桐梓县数学七年级第一学期期末经典试题含解析
- 蓝色粮仓-水产学专业导论智慧树知到期末考试答案章节答案2024年中国海洋大学、山东大学、中国科学院海洋研究所、上海海洋大学、华中农业大学、大连海洋大学、集美大学
评论
0/150
提交评论