版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省安陆市第一中学数学高一上期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,值域是的是A. B.C. D.2.设函数,A.3 B.6C.9 D.123.函数的零点所在的大致区间是A. B.C. D.4.函数在区间单调递减,在区间上有零点,则的取值范围是A. B.C. D.5.已知函数,则等于A.2 B.4C.1 D.6.函数是偶函数且在上单调递减,,则的解集为()A. B.C D.7.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,动点满足,则动点轨迹与圆位置关系是()A.外离 B.外切C.相交 D.内切8.函数的零点所在区间为()A.(0,) B.(,)C.(,1) D.(1,2)9.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为()A.125 B.135C.165 D.17010.为了得到函数的图象,只需将函数图象上所有的点A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.化简________.12.已知实数x,y满足条件,则的最大值___________.13.若则函数的最小值为________14.函数是定义在上周期为2的奇函数,若,则______15.已知对于任意x,y均有,且时,,则是_____(填奇或偶)函数16.已知函数,若有解,则m的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,不等式的解集为(1)求不等式的解集;(2)当在上单调递增,求m的取值范围18.已知函数是定义在上的奇函数,且当时,.(1)当时,求函数的解析式.(2)解关于的不等式:.19.在三棱柱中,侧棱底面,点是的中点.(1)求证:;(2)求证:;(3)求直线与平面所成的角的正切值.20.如图,在长方体中,,,是与的交点.求证:(1)平面(2)求与的所成角的正弦值.21.已知函数是定义在R上的奇函数(1)用定义法证明为增函数;(2)对任意,都有恒成立,求实数k的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】分别求出各函数的值域,即可得到答案.【题目详解】选项中可等于零;选项中显然大于1;选项中,,值域不是;选项中,故.故选D.【题目点拨】本题考查函数的性质以及值域的求法.属基础题.2、C【解题分析】.故选C.3、C【解题分析】分别求出的值,从而求出函数的零点所在的范围【题目详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【题目点拨】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题4、C【解题分析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式详解:当,,又∵,则,即,,由得,,∴,解得,综上.故选C.点睛:余弦函数的单调减区间:,增区间:,零点:,对称轴:,对称中心:,.5、A【解题分析】由题设有,所以,选A6、D【解题分析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【题目详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,所以,,可得或,解得或.因此,不等式的解集为.故选:D.7、C【解题分析】设动点P的坐标,利用已知条件列出方程,化简可得点P的轨迹方程为圆,再判断圆心距和半径的关系即可得解.,详解】设,由,得,整理得,表示圆心为,半径为的圆,圆的圆心为为圆心,为半径的圆两圆的圆心距为,满足,所以两个圆相交.故选:C.8、B【解题分析】结合函数的单调性以及零点的存在性定理求得正确答案.【题目详解】在上递减,所以,在上递增,所以,是定义在上的减函数,,所以函数的零点在区间.故选:B9、D【解题分析】利用公式可求平均数和90%分位数,再求出众数后可得所求的和.【题目详解】这组数据的平均数为,而,故90%分位数,众数为,故三者之和为,故选:D.10、B【解题分析】根据诱导公式将函数变为正弦函数,再减去得到.【题目详解】函数又故将函数图像上的点向右平移个单位得到故答案为:B.【题目点拨】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】观察到,故可以考虑直接用辅助角公式进行运算.【题目详解】故答案为:.12、【解题分析】利用几何意义,设,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,即可求解.【题目详解】由题意作出如下图形:令,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,当直线与圆相切时,在直角三角形OAB中,,∴,∴.故答案为:13、1【解题分析】结合图象可得答案.【题目详解】如图,函数在同一坐标系中,且,所以在时有最小值,即.故答案为:1.14、1【解题分析】根据给定条件利用周期性、奇偶性计算作答.【题目详解】因函数是上周期为2的奇函数,,所以.故答案为:1【题目点拨】易错点睛:函数f(x)是周期为T周期函数,T是与x无关的非零常数,且周期函数不一定有最小正周期.15、奇函数【解题分析】赋值,可求得,再赋值即可得到,利用奇偶性的定义可判断奇偶性;【题目详解】,令,得,,再令,得,是上的奇函数;【题目点拨】本题考查了赋值法及奇函数的定义16、【解题分析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【题目详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【题目点拨】本题考查函数与方程的应用,考查转化思想有解计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)﹒【解题分析】(1)根据二次不等式的解法求出b和c即可;(2)g(x)为开口向下的二次函数,要在[1,2]上递增,则对称轴为x=2或在x=2的右侧.【小问1详解】∵的解集为,∴1和2为方程的根,∴,则可得;∴,∴,即解集为:;【小问2详解】∵在上单调递增,∴,故,m的取值范围为:﹒18、(1)当时,(2)【解题分析】(1)根据函数奇偶性可求出函数的解析式;(2)先构造函数,然后利用函数的单调性解不等式.【小问1详解】解:当时,,..又当时,也满足当时,函数的解析式为.【小问2详解】设函数函数在上单调递增又可化为,在上也是单调递增函数.,解得.关于的不等式的解集为.19、(1)见解析(2)见解析(3)【解题分析】【试题分析】(1)依据题设运用线面平行的判定定理进行分析推证;(2)借助题设条件先证明线面垂直,再运用线面垂直的性质定理进行推证;(3)先运用线面角的定义找出线面角,再运用解三角形求其正切值:(1)如图,令分别为的中点,又∵(2)证明:∠⊥在直三棱柱中,⊥又⊥平面,又⊥(3)由(2)得AC⊥平面∴直线是斜线在平面上的射影∴是直线与平面所成的角.在中,∴,即求直线与平面的正切值为.点睛:立体几何是高中数学重点内容之一,也是高考重点考查的考点和热点.这类问题的设置目的是考查空间线面的位置关系及角度距离的计算.求解本题第一问时,直接依据题设运用线面平行的判定定理进行分析推证;求解第二问,充分借助题设条件先证明线面垂直,再运用线面垂直的性质定理从而使得问题获证;求解第三问时,先运用线面角的定义找出线面角,再运用解三角形求其正切值使得问题获解20、(1)见解析;(2)【解题分析】(1)根据长方体的性质,侧棱平行且相等,利用平行四边形判定及性质,推出线线平行,再证线面平行;(2)由(1),取平行线,即可求解异面直线所成角的平面角,再求正弦值.【题目详解】(1)连结交于点,连结,,,,..又平面,平面,平面(2)与的所成角为在中:【题目点拨】(1)立体几何中平行关系的证明,常见方法有平行四边形对边平行,本题比较基础.(2)借助平行线,将两条异面直线所成角转化为两条相交直线所成角,为常用方法,中等题型.21、(1)证明见解析(2)【解题分析】(1)根据函数单调性定义及指数函数的单调性与值域
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省宁德市(2024年-2025年小学五年级语文)部编版期末考试(上学期)试卷及答案
- 吉林省白山市(2024年-2025年小学五年级语文)部编版期中考试((上下)学期)试卷及答案
- 内蒙古阿拉善盟(2024年-2025年小学五年级语文)部编版课后作业(下学期)试卷及答案
- 期中模拟测试卷(试题)-2024-2025学年二年级上册数学人教版
- 第五章第四节幼儿的自我意识(课件)-《幼儿心理学》(人教版第二版)
- 书籍音像店装修合同模板
- 厨房设备搬迁运输协议
- 商铺装修解约协议样本
- 家电产品售后配送协议
- 仓储物流中心装修监理合同
- 人教版2024新版七年级上册数学期中模拟测试卷(含答案解析)
- 专题25 圆的基本性质(分层精练)(解析版)
- 教师招聘高中信息技术考试试题
- 5.2 珍惜师生情谊 课件-2024-2025学年统编版道德与法治七年 上册
- 行政或后勤岗位招聘笔试题及解答(某大型国企)2025年
- 医疗废物管理工作计划范文(4篇)
- 广联达智慧工地管理系统解决方案
- GB/T 18029.8-2024轮椅车第8部分:静态强度、冲击强度及疲劳强度的要求和测试方法
- 中华民族共同体概论课件专家版9第九讲 混一南北和中华民族大统合(元朝时期)
- 电梯日管控、周排查、月调度内容表格
- 《战争与和平法》读书笔记思维导图
评论
0/150
提交评论