版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届青海省海东市平安县第一高级中学高一上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正方体中,分别是的中点,则直线与平面所成角的余弦值为A. B.C. D.2.若关于的函数的最大值为,最小值为,且,则实数的值为()A.2020 B.2019C.1009 D.10103.设,则下列不等式中不成立的是()A. B.C. D.4.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()A. B.-C.2 D.5.若函数唯一的一个零点同时在区间、、、内,那么下列命题中正确的是A.函数在区间内有零点B.函数在区间或内有零点C.函数在区间内无零点D.函数在区间内无零点6.已知,则、、的大小关系为()A. B.C. D.7.如图()四边形为直角梯形,动点从点出发,由沿边运动,设点运动的路程为,面积为.若函数的图象如图(),则的面积为()A. B.C. D.8.在四棱锥中,平面,中,,,则三棱锥的外接球的表面积为A. B.C. D.9.函数的图象的一个对称中心为()A. B.C. D.10.已知函数f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.函数零点的个数为______.12.计算:________.13.边长为2的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________14.已知不等式的解集是__________.15.已知,且,若不等式恒成立,则实数的最大值是__________.16.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,其中(1)若当时取到最小值,求a的取值范围(2)设的最大值为,最小值为,求的函数解析式,并求的最小值18.已知函数.(1)求函数的最小正周期;(2)求函数的单调减区间;(3)当时,画出函数的图象.19.已知函数f(x)=ax2﹣(4a+1)x+4(a∈R).(1)若关于x不等式f(x)≥b的解集为{x|1≤x≤2},求实数a,b的值;(2)解关于x的不等式f(x)>0.20.已知由方程kx2-8x+16=0的根组成的集合A只有一个元素,试求实数k的值21.已知为锐角,,(1)求和的值;(2)求和的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】设正方体的棱长为,如图,连接,它们交于,连接,则平面,而,故就是直线与平面所成的余角,又为直角三角形且,所以,,设直线与平面所成的角为,则,选C.点睛:线面角的计算往往需要先构造面的垂线,必要时还需将已知的面的垂线适当平移才能构造线面角,最后把该角放置在容易计算的三角形中计算其大小.2、D【解题分析】化简函数,构造函数,再借助函数奇偶性,推理计算作答.【题目详解】依题意,当时,,,则,当时,,,即函数定义域为R,,令,,显然,即函数是R上的奇函数,依题意,,,而,即,而,解得,所以实数的值为.故选:D3、B【解题分析】对于A,C,D利用不等式的性质分析即可,对于B举反例即可【题目详解】对于A,因为,所以,所以,即,所以A成立;对于B,若,,则,,此时,所以B不成立;对于C,因为,所以,所以C成立;对于D,因为,所以,则,所以D成立,故选:B.【题目点拨】本题考查不等式的性质的应用,属于基础题.4、A【解题分析】如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角【题目详解】解:如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角设,则,,,异面直线与所成角的余弦值为,故选:A【题目点拨】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角5、D【解题分析】有题意可知,函数唯一的一个零点应在区间内,所以函数在区间内无零点考点:函数的零点个数问题6、A【解题分析】借助中间量比较大小即可.【题目详解】解:因为,所以.故选:A7、B【解题分析】由题意,当在上时,;当在上时,图()在,时图象发生变化,由此可知,,根据勾股定理,可得,所以本题选择B选项.8、B【解题分析】由题意,求长,即可求外接圆半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球的表面积.【题目详解】由题意中,,,则是等腰直角三角形,平面可得,,平面,,则的中点为球心设外接圆半径为,则,设球心到平面的距离为,则,由勾股定理得,则三棱锥的外接球的表面积故选:【题目点拨】本题考查三棱锥外接球表面积的求法,利用球的对称性确定球心到平面的距离,培养空间感知能力,中等题型.9、C【解题分析】根据正切函数的对称中心为,可求得函数y图象的一个对称中心【题目详解】由题意,令,,解得,,当时,,所以函数的图象的一个对称中心为故选C【题目点拨】本题主要考查了正切函数的图象与性质的应用问题,其中解答中熟记正切函数的图象与性质,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.10、C【解题分析】画图可知四个零点分别为-1和3,和e,但注意到f(x)的定义域为x>0,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【题目详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【题目点拨】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.12、【解题分析】由,利用正弦的和角公式求解即可【题目详解】原式,故答案为:【题目点拨】本题考查正弦的和角公式的应用,考查三角函数的化简问题13、2【解题分析】取的中点,连接,,则,则为二面角的平面角点睛:取的中点,连接,,根据正方形可知,,则为二面角的平面角,在三角形中求出的长.本题主要是在折叠问题中考查了两点间的距离.折叠问题要注意分清在折叠前后哪些量发生了变化,哪里量没变14、【解题分析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集.详解】,,,或,解得或,所以不等式不等式的解集是.故答案为:15、9【解题分析】利用求的最小值即可.【题目详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.16、①.②.【解题分析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值.【题目详解】因为最小正周期为,所以,又因为,所以,所以或,又因为,所以,所以,所以,令,所以,又因为,所以,所以对称中心为;因为,,所以,若,则,不符合,所以,所以,所以,故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),最小值为.【解题分析】(1)求得函数的导数,令,要使得函数在取到最小值,则函数必须先减后增,列出方程组,即可求解;(2)由(1)知,若时,得到函数在上单调递减,得到;若时,令,求得,分,,三种情况讨论,求得函数的解析式,利用一次函数、换元法和二次函数的性质,即可求解.【小问1详解】解:由函数,可得,令,要使得函数在取到最小值,则函数必须先减后增,则满足,解得,即实数取值范围为.【小问2详解】解:由(1)知,设,若时,即时,,即,函数在上单调递减,所以,可得;若时,即时,令,即,解得或,①当时,即时,在恒成立,即,可得函数在上单调递增,所以,可得;②当时,即时,在恒成立,即,可得函数在上单调递减,所以,可得;③当时,即时,当时,,即,单调递减;当时,,即,单调递增,所以当时,函数取得最小值,即,又由,可得,(i)当时,,即,所以,此时;(ii)当时,,即,所以,此时,综上可得,函数的解析式为,当时,;当时,;当时,令,则,可得,根据二次函数的性质,可得当时,函数取得最小值,最小值为;当时,令,则,可得,则,综上可得,函数的最小值为.18、(1);(2);(2)详见解析.【解题分析】(1)利用二倍角公式和辅助角法得到函数为,再利用周期公式求解;所以函数的周期为;(2)令,利用正弦函数的性质求解;(3)由列表,利用“五点法”画出函数图象.:【题目详解】(1),,,所以函数的周期为;(2)令,解得,所以函数的单调减区间是;(3)由列表如下:0xy0-2020则函数的图象如下:.19、(1)-1,6;(2)答案见详解【解题分析】(1)由f(x)≥b的解集为{x|1≤x≤2}结合韦达定理即可求解参数a,b的值;(2)原式可因式分解为,再分类讨论即可,对再细分为即可求解.【题目详解】(1)由f(x)≥b得,因为f(x)≥b的解集为{x|1≤x≤2},故满足,,解得;(2)原式因式分解可得,当时,,解得;当时,的解集为;当时,,①若,即,则的解集为;②若,即时,解得;③若,即时,解得.【题目点拨】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题.20、k=0或1.【解题分析】讨论当k=0时和当k≠0时,两种情况,其中当k≠0时,只需Δ=64-64k=0即可.试题解析:当k=0时,原方程变为-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小班玩沙活动教案5篇
- 2024-2030年白酒行业市场发展分析及发展趋势前景预测报告
- 2024-2030年疏水阀监控器行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年电动锁具行业并购重组机会及投融资战略研究咨询报告
- 2024-2030年电动产床产业发展分析及发展趋势与投资前景预测报告
- 2024-2030年生姜产品行业发展分析及投资价值研究咨询报告
- 2024-2030年环形电感行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年玉器行业兼并重组机会研究及决策咨询报告
- 2024-2030年物料喷射(MJ)行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年燃气汽车行业市场发展分析及发展前景与投资机会研究报告
- 人教版2024新版七年级上册数学期中模拟测试卷(含答案解析)
- GB/T 18029.8-2024轮椅车第8部分:静态强度、冲击强度及疲劳强度的要求和测试方法
- 中华民族共同体概论课件专家版9第九讲 混一南北和中华民族大统合(元朝时期)
- 电梯日管控、周排查、月调度内容表格
- 员工培训存在的问题与对策研究
- 第一章 热气机
- 电力系统的故障类型及原因分析
- 如何实现深部找矿新突破
- 产品总监绩效考核表
- 英语48个国际音标教案(10课时)
- 医学前沿—I-IIIB期非小细胞肺癌完全切除术后辅助治疗指南(2021版)
评论
0/150
提交评论