河南省南阳市南阳一中2024届数学高一上期末监测模拟试题含解析_第1页
河南省南阳市南阳一中2024届数学高一上期末监测模拟试题含解析_第2页
河南省南阳市南阳一中2024届数学高一上期末监测模拟试题含解析_第3页
河南省南阳市南阳一中2024届数学高一上期末监测模拟试题含解析_第4页
河南省南阳市南阳一中2024届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省南阳市南阳一中2024届数学高一上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用区间表示不超过的最大整数,如,设,若方程有且只有3个实数根,则正实数的取值范围为()A B.C. D.2.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.83.各侧棱长都相等,底面是正多边形的棱锥称为正棱锥,正三棱锥的侧棱长为,侧面都是直角三角形,且四个顶点都在同一个球面上,则该球的表面积为()A. B.C. D.4.若函数唯一的一个零点同时在区间、、、内,那么下列命题中正确的是A.函数在区间内有零点B.函数在区间或内有零点C.函数在区间内无零点D.函数在区间内无零点5.函数,的最小值是()A. B.C. D.6.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.7.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为()A. B.C. D.8.若,则cos2x=()A. B.C. D.9.函数,值域是()A. B.C. D.10.在一段时间内,若甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,且甲乙两人各自行动.则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.48 B.0.32C.0.92 D.0.84二、填空题:本大题共6小题,每小题5分,共30分。11.新高考选课走班“3+1+2”模式指的是:语文、数学、外语三门学科为必考科目,物理、历史两门科目必选一门,化学、生物、思想政治、地理四门科目选两门.已知在一次选课过程中,甲、乙两同学选择科目之间没有影响,在物理和历史两门科目中,甲同学选择历史的概率为,乙同学选择物理的概率为,那么在物理和历史两门科目中甲、乙两同学至少有1人选择物理的概率为______12.若,则的值为___________.13.已知函数,则下列说法正确的有________.①的图象可由的图象向右平移个单位长度得到②在上单调递增③在内有2个零点④在上的最大值为14.函数的值域是____________,单调递增区间是____________.15.若不等式的解集为,则不等式的解集为______.16.已知函数(1)利用五点法画函数在区间上的图象(2)已知函数,若函数的最小正周期为,求的值域和单调递增区间;(3)若方程在上有根,求的取值范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为,田忌的三匹马分别为.三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛的优劣程度可以用以下不等式表示:.(1)如果双方均不知道对方马的出场顺序,求田忌获胜的概率;(2)为了得到更大的获胜概率,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马,那么,田忌应怎样安排出马的顺序,才能使自己获胜的概率最大?最大概率是多少?18.(1)已知求的值(2)已知,且为第四象限角,求的值.19.如图,在三棱柱中,侧棱平面,、分别是、的中点,点在侧棱上,且,,求证:(1)直线平面;(2)平面平面.20.设全集,集合(1)求;(2)若集合满足,求实数的取值范围.21.已知函数常数证明在上是减函数,在上是增函数;当时,求的单调区间;对于中的函数和函数,若对任意,总存在,使得成立,求实数a的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由方程的根与函数交点的个数问题,结合数形结合的数学思想方法,作图观察y={x}的图象与y=﹣kx+1的图象有且只有3个交点时k的取值范围,即可得解.【题目详解】方程{x}+kx﹣1=0有且只有3个实数根等价于y={x}的图象与y=﹣kx+1的图象有且只有3个交点,当0≤x<1时,{x}=x,当1≤x<2时,{x}=x﹣1,当2≤x<3时,{x}=x﹣2,当3≤x<4时,{x}=x﹣3,以此类推如上图所示,实数k的取值范围为:k,即实数k的取值范围为:(,],故选A【题目点拨】本题考查了方程的根与函数交点的个数问题,数形结合的数学思想方法,属中档题2、B【解题分析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【题目详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.3、D【解题分析】因为侧棱长为a的正三棱锥P﹣ABC的侧面都是直角三角形,且四个顶点都在一个球面上,三棱锥的正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,正方体的对角线长为:;所以球的表面积为:4π=3πa2故答案为D.点睛:本题考查了球与几何体的问题,是高考中的重点问题,一般外接球需要求球心和半径,首先应确定球心的位置,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心,有时也可利用补体法得到半径.4、D【解题分析】有题意可知,函数唯一的一个零点应在区间内,所以函数在区间内无零点考点:函数的零点个数问题5、D【解题分析】利用基本不等式可求得的最小值.【题目详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.6、D【解题分析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【题目详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D7、A【解题分析】利用角速度先求出时,的值,然后利用单调性进行判断即可【题目详解】因为,所以由,得,此时,所以排除CD,当时,越来越小,单调递减,所以排除B,故选:A8、D【解题分析】直接利用二倍角公式,转化求解即可【题目详解】解:,则cos2x=1﹣2sin2x=1﹣2故选D【题目点拨】本题考查二倍角的三角函数,考查计算能力9、A【解题分析】令,求出g(t)的值域,再根据指数函数单调性求f(x)值域.【题目详解】令,则,则,故选:A.10、C【解题分析】根据题意求得甲乙都不去参观博物馆的概率,结合对立事件的概率计算公式,即可求解.【题目详解】由甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,可得甲乙都不去参观博物馆的概率为,所以甲乙两人至少有一个去参观博物馆的概率是.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】至少1人选择物理即为1人选择物理或2人都选择物理,由题分别得到甲选择物理的概率与乙选择历史的概率,进而求解即可.【题目详解】由题,设“在物理和历史两门科目中甲、乙两同学至少有1人选择物理”事件,则包括有1人选择物理,或2人都选择物理,因为甲同学选择历史的概率为,则甲同学选择物理的概率为,因为乙同学选择物理的概率为,则乙同学选择历史的概率为,故,故答案为:12、1或【解题分析】由诱导公式、二倍角公式变形计算【题目详解】,所以或,时,;时,故答案为:1或13、②③【解题分析】化简函数,结合三角函数的图象变换,可判定①不正确;根据正弦型函数的单调的方法,可判定②正确;令,求得,可判定③正确;由,得到,结合三角函数的性质,可判定④正确.【题目详解】由函数,对于①中,将函数的图象向右平移个单位长度,得到,所以①不正确;对于②中,令,解得,当时,可得,即函数在上单调递增,所以函数在上单调递增,所以②正确;对于③中,令,可得,解得,当时,可得;当时,可得,所以内有2个零点,所以③正确;对于④中,由,可得,当时,即时,函数取得最大值,最大值为,所以④不正确.故答案为:②③.14、①.②.【解题分析】先求二次函数值域,再根据指数函数单调性求函数值域;根据二次函数单调性与指数函数单调性以及复合函数单调性法则求函数增区间.【题目详解】因为,所以,即函数的值域是因为单调递减,在(1,+)上单调递减,因此函数的单调递增区间是(1,+).【题目点拨】本题考查复合函数值域与单调性,考查基本分析求解能力.15、【解题分析】由三个二次的关系求,根据分式不等式的解法求不等式的解集.【题目详解】∵不等式的解集为∴,是方程的两根,∴,∴可化为∴∴不等式的解集为,故答案为:.16、(1)(2)的值域为,单调递增区间为;(3)【解题分析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围.【小问1详解】作出表格如下:x0020-20在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图:【小问2详解】,其中,由题意得:,解得:,故,故的值域为,令,解得:,所以的单调递增区间为:【小问3详解】因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)田忌按或的顺序出马,才能使自己获胜的概率达到最大【解题分析】(1)齐王与田忌赛马,有六种情况,田忌获胜的只有一种,故田忌获胜的槪率为.(2)因齐王第一场必出上等马,若田忌第一场必出上等马或中等马,则剩下二场,田忌至少输一场,这时田忌必败.为了使自己获胜的概率最大,田忌第一场应出下等马,在余下的两场比赛中,田忌获胜的概率为(余下两场是齐王的中马对田忌上马和齐王的下马对田忌的上马;齐王的中马对田忌下马和齐王的下马对田忌的中马,前者田忌赢,后者田忌输)解析:记与比赛为,其它同理.(1)齐王与田忌赛马,有如下六种情况:;;;;;;其中田忌获胜的只有一种:.故田忌获胜的槪率为.(2)已知齐王第一场必出上等马,若田忌第一场必出上等马或中等马,则剩下二场,田忌至少输一场,这时田忌必败.为了使自己获胜的概率最大,田忌第一场应出下等马,后两场有两种情形:①若齐王第二场派出中等马,可能的对阵为:或.田忌获胜的概率为,②若齐王第二场派出下等马,可能的对阵为:或.田忌获胜的概率也为.所以,田忌按或的顺序出马,才能使自己获胜的概率达到最大.18、(1);(2).【解题分析】(1)由诱导公式得,进而由,将所求的式子化为二次齐次式,进而得到含的式子,从而得解(2)由,结合角的范围可得解.【题目详解】(1)由,得,所以,.(2),所以,又为第四象限角,所以,所以.19、(1)证明见解析;(2)证明见解析.【解题分析】(1)由中位线的性质得出,由棱柱的性质可得出,由平行线的传递性可得出,进而可证明出平面;(2)证明出平面,可得出,结合可证明出平面,再由面面垂直的判定定理即可证明出结论成立.【题目详解】(1)、分别为、的中点,为的中位线,,为棱柱,,,平面,平面,平面;(2)在三棱柱中,平面,平面,,又且,、平面,平面,而平面,故.又,且,、平面,平面,又平面,平面平面.【题目点拨】本题考查线面平行和面面垂直的证明,考查推理能力,属于中等题.20、(1)或(2)【解题分析】(1)化简集合,利用交集的定义求解,再利用补集的定义求解;(2)化简集合,由,得,列不等式求解.【小问1详解】化简,,所以或.【小问2详解】,因为,所以,所以,所以实数的取值范围为21、(1)见解析;(2)见解析;(3)【解题分析】利用定义证明即可;把看成整体,研究对勾函数的单调性以及利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论