版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
漳州市重点中学2024届数学高一上期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点且与原点距离最大的直线方程是()A. B.C. D.2.设函数,则使成立的的取值范围是A. B.C. D.3.已知,则的周期为()A. B.C.1 D.24.直线过点且与以点为端点的线段恒相交,则的斜率取值范围是().A. B.C. D.5.若,,,则a,b,c之间的大小关系是()A.c>b>a B.c>a>bC.a>c>b D.b>a>c6.已知偶函数在单调递减,则使得成立的的取值范围是A. B.C. D.7.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A'DE是△ADE绕DE旋转过程中的一个图形(A'不与A,F重合),则下列命题中正确的是()①动点A'在平面ABC上的射影在线段AF上;②BC∥平面A'DE;③三棱锥A'-FED的体积有最大值.A.① B.①②C.①②③ D.②③8.“,”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知函数的部分函数值如下表所示:x10.50.750.6250.56250.6321-0.10650.27760.0897-0.007那么函数的一个零点的近似值(精确度为0.01)为()A.0.55 B.0.57C.0.65 D.0.710.函数f(x)=的定义域为A.[1,3)∪(3,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)二、填空题:本大题共6小题,每小题5分,共30分。11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家.用其名字命名的“高斯函数”为:,表示不超过x的最大整数,如,,[2]=2,则关于x的不等式的解集为__________.12.已知对于任意x,y均有,且时,,则是_____(填奇或偶)函数13.已知,,,则的最小值___________.14.已知向量不共线,,若,则___15.已知,,则_________.16.已知函数在上单调递减,则实数的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算:(1)(2)(3)18.计算:(1)94(2)lg5+lg2⋅19.如图,在中,已知为线段上的一点,.(1)若,求的值;(2)若,,,且与的夹角为时,求的值20.已知函数,若区间上有最大值5,最小值2.(1)求的值(2)若,在上单调,求的取值范围.21.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.在一般情况下,隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)满足关系式:.研究表明:当隧道内的车流密度达到辆/千米时造成堵塞,此时车流速度是千米/小时.(1)若车流速度不小于千米/小时,求车流密度的取值范围;(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到辆/小时),并指出当车流量最大时的车流密度.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】首先根据题意得到过点且与垂直的直线为所求直线,再求直线方程即可.【题目详解】由题知:过点且与原点距离最大的直线为过点且与垂直的直线.因为,故所求直线为,即.故选:A【题目点拨】本题主要考查直线方程的求解,数形结合为解题的关键,属于简单题.2、A【解题分析】,定义域为,∵,∴函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得成立,∴,∴,∴的范围为故答案为A.考点:抽象函数的不等式.【思路点晴】本题考查了偶函数的性质和利用偶函数图象的特点解决实际问题,属于基础题型,应牢记.根据函数的表达式可知函数为偶函数,根据初等函数的性质判断函数在大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,把可转化为,解绝对值不等式即可3、A【解题分析】利用两角和的正弦公式化简函数,代入周期计算公式即可求得周期.【题目详解】,周期为:故选:A【题目点拨】本题考查两角和的正弦公式,三角函数的最小正周期,属于基础题.4、D【解题分析】详解】∵∴根据如下图形可知,使直线与线段相交的斜率取值范围是故选:D.5、C【解题分析】利用指数函数与对数函数的单调性即可得出【题目详解】∵a=22.5>1,<0,,∴a>c>b,故选C【题目点拨】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题6、C【解题分析】∵函数为偶函数,∴∵函数在单调递减∴,即∴使得成立的的取值范围是故选C点睛:这个题目考查的是抽象函数的单调性和奇偶性,在不等式中的应用.解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.7、C【解题分析】【思路点拨】注意折叠前DE⊥AF,折叠后其位置关系没有改变.解:①中由已知可得平面A'FG⊥平面ABC∴点A'在平面ABC上的射影在线段AF上.②BC∥DE,BC⊄平面A'DE,DE⊂平面A'DE,∴BC∥平面A'DE.③当平面A'DE⊥平面ABC时,三棱锥A'-FED的体积达到最大.8、A【解题分析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【题目详解】,时,,,时,,所以“,”是“”的充分而不必要条件,故选:.9、B【解题分析】根据给定条件直接判断函数的单调性,再结合零点存在性定理判断作答.【题目详解】函数在R上单调递增,由数表知:,由零点存在性定义知,函数的零点在区间内,所以函数的一个零点的近似值为.故选:B10、D【解题分析】由根式内部的代数式大于等于0,分式的分母不为0两类不等式组求解【题目详解】要使原函数有意义,需满足,解得x≥1.∴函数f(x)=的定义域为[1,+∞)故选D.【题目点拨】本题考查函数的定义域及其求法,解题的关键是是根式内部的代数式大于等于0,分式的分母不为0二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】解一元二次不等式,结合新定义即可得到结果.【题目详解】∵,∴,∴,故答案为:12、奇函数【解题分析】赋值,可求得,再赋值即可得到,利用奇偶性的定义可判断奇偶性;【题目详解】,令,得,,再令,得,是上的奇函数;【题目点拨】本题考查了赋值法及奇函数的定义13、【解题分析】利用“1”的变形,结合基本不等式,求的最小值.【题目详解】,当且仅当时,即等号成立,,解得:,,所以的最小值是.故答案为:14、【解题分析】由,将表示为的数乘,求出参数【题目详解】因为向量不共线,,且,所以,即,解得【题目点拨】向量与共线,当且仅当有唯一一个实数,使得15、【解题分析】利用两角差的正切公式可计算出的值.【题目详解】由两角差的正切公式得.故答案为:.【题目点拨】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.16、【解题分析】根据分段函数的单调性,可知每段函数的单调性,以及分界点处的函数的的大小关系,即可列式求解.【题目详解】因为分段函数在上单调递减,所以每段都单调递减,即,并且在分界点处需满足,即,解得:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2(2)2(3)【解题分析】(1)直接利用对数的运算法则计算得到答案.(2)直接利用指数幂的运算法则计算得到答案.(3)根据诱导公式化简计算得到答案.【小问1详解】【小问2详解】【小问3详解】.18、(1)12【解题分析】(1)根据指数幂的运算法则逐一进行化简;(2)根据对数幂的运算法则进行化简;【题目详解】解:(1)原式=3(2)原式=lg【题目点拨】指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂形式表示,运用指数幂的运算性质来解答.19、(1);(2).【解题分析】(1)根据平面向量基本定理可得,整理可得结果;(2)根据平面向量基本定理可求得,,根据数量积的运算法则代入模长和夹角,整理可求得结果.【题目详解】(1)由得:,(2)由得:又,,且与的夹角为则【题目点拨】本题考查平面向量基本定理的应用、平面向量数量积的求解,关键是能将所求向量的数量积通过平面向量基本定理转化为已知模长和夹角的向量的数量积运算.20、(1)或;(2).【解题分析】(1)分和两种情况讨论,根据单调性的不同分别代入求值即可;(2)易知也为二次函数,若要在区间上单调,则对称轴在区间外即可.【题目详解】(1)由可得二次函数的对称轴为,①当时,在上为增函数,可得,所以,当时,在上为减函数,可得,解得;(2)即,在上单调,或即或,故的取值范围为.21、(1);(2)最大值约为3250辆/小时,车流密度约为87辆/千米.【解题分析】(1)把代入已知式求得,解不等式可得的范围(2)由(1)求得函数,分别利用函数的单调性和基本不等式分段求得最大值,比较可得【题目详解】解:(1)由题意知当(辆/千米)时,(千米/小时),代入得,解得所以当时,,符
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 储煤场土地使用权转让合同(04版)
- 代理佣金协议范本标准版
- 店铺次转租协议
- 2024年度财务管理加盟合同:规范财务体系提升效益
- 2024版地铁隧道防水施工合同
- 电梯门套2024年度供货及安装服务合同
- 二零二四年度房屋买卖合同:新建住宅商品房购买合同
- 抵押借款协议书范例
- 二零二四年份节日装饰灯光设计与施工合同
- 二零二四年度科研项目代理合同
- 2024年全国版图知识竞赛(小学组)考试题库大全(含答案)
- 拟建建筑物地质差异较大时的地基处理措施
- 钢制汽车零件感应淬火金相检验
- 药学服务培训课题
- 大学生生涯发展展示
- 无人机集群作战分析报告
- 《水力发电》课件
- 口腔护理会阴护理ppt
- 即食鸡肉行业前景分析
- 保密管理的组织架构与职责分工
- 主题班会《感恩父母·老师》课件
评论
0/150
提交评论