版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市易县中学2024届高一上数学期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在的图象大致为A. B.C. D.2.下列函数中,既是偶函数,又在区间上是增函数的是()A. B.C. D.3.已知cosα=,cos(α+β)=-,且α,β∈,则cos(α-β)的值等于A.- B.C.- D.4.若角的终边经过点,且,则()A.﹣2 B.C. D.25.若,且,则()A. B.C. D.6.以,为基底表示为A. B.C. D.7.若,,则的值为()A. B.-C. D.8.若圆上有且仅有两个点到直线的距离等于1,则半径的取值范围是()A. B.C. D.9.已知向量,,若,则实数的值为()A.或 B.C. D.或310.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.正方体ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________12.已知,,则_________.13.已知A、B均为集合的子集,且,,则集合________14.已知函数是幂函数,且时,单调递减,则的值为___________.15.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______16.已知,若,则实数的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围18.闽东传承着中国博大精深的茶文化,讲究茶叶茶水的口感,茶水的口感与茶叶类型和水的温度有关.如果刚泡好的茶水温度是,空气的温度是,那么分钟后茶水的温度(单位:)可由公式求得,其中是一个物体与空气的接触状况而定的正常数.现有某种刚泡好的红茶水温度是,放在的空气中自然冷却,10分钟以后茶水的温度是(1)求k的值;(2)经验表明,温度为的该红茶水放在的空气中自然冷却至时饮用,可以产生最佳口感,那么,大约需要多长时间才能达到最佳饮用口感?(结果精确到,附:参考值)19.在平面直角坐标系中,已知角的顶点为坐标原点,始边为轴的正半轴,终边过点(1)求的值;(2)求的值20.化简(1)(2)21.抛掷两颗骰子,计算:(1)事件“两颗骰子点数相同”的概率;(2)事件“点数之和小于7”概率;(3)事件“点数之和等于或大于11”的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】当时,,去掉D;当时,,去掉B;因为,所以去A,选C.点睛:(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.2、B【解题分析】先判断定义域是否关于原点对称,再将代入判断奇偶性,进而根据函数的性质判断单调性即可【题目详解】对于选项A,定义域为,,故是奇函数,故A不符合条件;对于选项B,定义域为,,故是偶函数,当时,,由指数函数的性质可知,在上是增函数,故B正确;对于选项C,定义域为,,故是偶函数,当时,,由对数函数的性质可知,在上是增函数,则在上是减函数,故C不符合条件;对于选项D,定义域为,,故是奇函数,故D不符合条件,故选:B【题目点拨】本题考查判断函数的奇偶性和单调性,熟练掌握函数的性质是解题关键3、D【解题分析】∵α∈,∴2α∈(0,π).∵cosα=,∴cos2α=2cos2α-1=-,∴sin2α=,而α,β∈,∴α+β∈(0,π),∴sin(α+β)=,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)==.4、D【解题分析】根据三角函数定义得到,计算得到答案.【题目详解】故选:【题目点拨】本题考查了三角函数定义,属于简单题.5、D【解题分析】根据给定条件,将指数式化成对数式,再借助换底公式及对数运算法则计算即得.【题目详解】因为,于是得,,又因为,则有,即,因此,,而,解得,所以.故选:D6、B【解题分析】设,利用向量相等可构造方程组,解方程组求得结果.【题目详解】设则本题正确选项:【题目点拨】本题考查平面向量基本定理的应用,关键是能够通过向量相等构造出方程组,属于基础题.7、D【解题分析】直接利用同角三角函数关系式的应用求出结果.【题目详解】已知,,所以,即,所以,所以,所以.故选:D.8、C【解题分析】圆上有且仅有两个点到直线的距离等于1,先求圆心到直线的距离,再求半径的范围【题目详解】解:圆的圆心坐标,圆心到直线的距离为:,又圆上有且仅有两个点到直线的距离等于1,满足,即:,解得故半径的取值范围是,(如图)故选:【题目点拨】本题考查直线与圆的位置关系,考查数形结合的数学思想,属于中档题9、A【解题分析】先求的坐标,再由向量垂直数量积为0,利用坐标运算即可得解.【题目详解】由向量,,知.若,则,解得或-3.故选A.【题目点拨】本题主要考查了向量垂直的坐标表示,属于基础题.10、D【解题分析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积【题目详解】设球的半径为,∵,∴平面与球心的距离为,∵截球所得截面的面积为,∴时,,故由得,∴,∴球的表面积,故选D【题目点拨】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、45°【解题分析】解:如图,设正方体ABCD-A1B1C1D1的棱长为1,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),设面ABC1的法向量为=(x,y,z),∵•=0,•=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),设二面角C1-AB-C的平面角为θ,∴cosθ=|cos<,>|=,∴θ=45°,答案为45°考点:二面角的平面角点评:本题考查二面角的平面角及求法,是基础题.解题时要认真审题,注意向量法的合理运用12、【解题分析】利用两角差的正切公式可计算出的值.【题目详解】由两角差的正切公式得.故答案为:.【题目点拨】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.13、【解题分析】根据集合的交集与补集运算,即可求得集合A中的元素.再判定其他元素是否符合要求.【题目详解】A、B均为集合的子集若,则若,则假设,因为,则.所以,则必含有1,不合题意,所以同理可判断综上可知,故答案为:【题目点拨】本题考查了元素与集合的关系,集合与集合的交集与补集运算,对于元素的分析方法,属于基础题.14、【解题分析】根据幂函数定义求出m的值,根据函数的单调性确定m的值,再利用对数运算即可.【题目详解】为幂函数,,解得:或当时,在上单调递增,不符合题意,舍去;当时,在上单调递减,符合题意;,故答案为:15、【解题分析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可16、【解题分析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【题目详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【题目点拨】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用两角和与差的正弦函数、二倍角公式化简,将化为只含有一个三角函数的形式,然后利用三角函数性质求解;(2)将在恰有10个零点变为在在恰有10个解的问题,列出相应不等式即可求解.【小问1详解】,由,得,可知函数的值域为,【小问2详解】令,即,所以函数在恰有10个零点,即在在恰有10个解,设的最小正周期为,则,解得,即最小正周期的取值范围时.18、(1)(2)【解题分析】(1)由解方程可得解;(2)令,解方程可得解.【小问1详解】由题意可知,,其中,所以,解得小问2详解】设刚泡好的茶水大约需要放置分钟才能达到最佳饮用口感,由题意可知,,令,所以,,,所以,所以刚泡好的茶水大约需要放置分钟才能达到最佳饮用口感.19、(1)(2)当时,;当时,【解题分析】(1)根据三角函数的定义及诱导公式、同角三角函数基本关系化简求解;(2)分,分别由定义求出三角函数值求解即可.【小问1详解】由角的终边过点,得,所以【小问2详解】当时,,所以当时,,所以综上,当时,;当时,20、(1)(2)【解题分析】三角换元之后,逆用和差角公式即可化简【小问1详解】【小问2详解】21、(1);(2);(3)【解题分析】(1)根据所有的基本事件的个数为,而所得点数相同的情况有种,从而求得事件“两颗骰子点数相同”的概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文黄果树瀑布课件
- 小学英语阅读教育课件
- 油田职业生涯规划
- 2025年元旦窗花福字元素喜庆模板
- 《若何写案例论文》课件
- 浙江省宁波市余姚中学2024-2025学年高二上学期期中考试英语试题 含解析
- 物业综合虫害防治投放表
- 2020-2021学年人教部编版语文三年级上册-《大青树下的小学》教案
- 学校2025元旦假期安全教育宣传课件
- 《数学与交通》特训
- 儿童中医穴位保健知识讲座
- 铁路客运服务质量的提升与改善
- 机械加工工艺培训课件
- 工地模板亏损报告
- 四手操作流程护理课件
- 2024年中信金属股份有限公司招聘笔试参考题库附带答案详解
- 中药热奄包在妇科疾病中的临床应用
- 山东省汽车维修工时定额(T-SDAMTIA 0001-2023)
- 高考地理一轮复习洋流+课件
- 临床疗效总评量表(CGI)
- 2024年度危险作业监护人安全培训考试题
评论
0/150
提交评论