版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省定远炉桥中学2024届高一数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,周期为的是()A. B.C. D.2.设长方体的长、宽、高分别为,其顶点都在一个球面上,则该球的表面积为A.3a2 B.6a2C.12a2 D.24a23.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.函数的定义域为()A B.C. D.5.已知函数,则的零点所在区间为A. B.C. D.6.若实数满足,则的最小值为()A.1 B.C.2 D.47.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.648.如图所示韦恩图中,若A={1,2,3,4,5},B={3,4,5,6,7},则阴影部分表示的集合是()A.2,3,4,5,6, B.2,3,4,C.4,5,6, D.2,6,9.已知函数f(x)=-log2x,则f(x)的零点所在的区间是()A.(0,1) B.(2,3)C.(3,4) D.(4,+∞)10.设全集,,,则如图阴影部分表示的集合为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知是上的点,且,设,,则=________.(用,表示)12.集合的子集个数为______13.已知函数,对于任意都有,则的值为______________.14.不等式的解集是___________.(用区间表示)15.写出一个在区间上单调递增幂函数:______16.函数f(x)是定义在R上的偶函数,f(x-1)是奇函数,且当时,,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在区间上的最大值为6.(1)求常数m的值;(2)当时,将函数的图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数,求函数的单调递减区间、对称中心.18.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点(1)求证:CD⊥平面A1ABB1;(2)求证:AC1∥平面CDB119.(1)已知,,试用、表示;(2)化简求值:20.如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求三棱锥C-BGF的体积21.已知全集,集合,.(1)当时,求;(2)如果,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】对于A、B:直接求出周期;对于C:先用二倍角公式化简,再求其周期;对于D:不是周期函数,即可判断.【题目详解】对于A:的周期为,故A错误;对于B:的周期为,故B错误;对于C:,所以其周期为,故C正确;对于D:不是周期函数,没有最小正周期,故D错误.故选:C2、B【解题分析】方体的长、宽、高分别为,其顶点都在一个球面上,长方体的对角线的长就是外接球的直径,所以球直径为:,所以球的半径为,所以球的表面积是,故选B3、B【解题分析】根据充分必要性分别判断即可.【题目详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.4、D【解题分析】由函数解析式可得关于自变量的不等式组,其解集为函数的定义域.【题目详解】由题设可得:,故,故选:D.5、B【解题分析】根据函数的零点判定定理可求【题目详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【题目点拨】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题6、C【解题分析】先根据对数的运算得到,再用基本不等式求解即可.【题目详解】由对数式有意义可得,由对数的运算法则得,所以,结合,可得,所以,当且仅当时取等号,所以.故选:.7、B【解题分析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【题目详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.8、D【解题分析】根据图象确定阴影部分的集合元素特点,利用集合的交集和并集进行求解即可【题目详解】阴影部分对应的集合为{x|x∈A∪B且x∉A∩B},∵A∪B={1,2,3,4,5,6,7},A∩B={3,4,5},∴阴影部分的集合为{1,2,6,7},故选D【题目点拨】本题主要考查集合的运算,根据Venn图表示集合关系是解决本题的关键9、C【解题分析】先判断出函数的单调性,然后得出的函数符号,从而得出答案.【题目详解】由在上单调递减,在上单调递减所以函数在上单调递减又根据函数f(x)在上单调递减,由零点存在定理可得函数在(3,4)之间存在零点.故选:C10、D【解题分析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【题目详解】,.图中阴影部分所表示的集合为且.故选:D.【题目点拨】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、+##【解题分析】根据平面向量的线性运算可得答案.【题目详解】因为,所以,所以可解得故答案为:12、32【解题分析】由n个元素组成的集合,集合的子集个数为个.【题目详解】解:由题意得,则A的子集个数为故答案为:32.13、【解题分析】由条件得到函数的对称性,从而得到结果【题目详解】∵f=f,∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.∴f=±2.【题目点拨】本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.14、【解题分析】根据一元二次不等式解法求不等式解集.【题目详解】由题设,,即,所以不等式解集为.故答案为:15、x(答案不唯一)【解题分析】由幂函数的性质求解即可【题目详解】因为幂函数在区间上单调递增,所以幂函数可以是,故答案为:(答案不唯一)16、1【解题分析】由函数f(x)是定义在R上的偶函数及f(x-1)是奇函数得到函数的周期,进而根据函数的性质求得答案.【题目详解】根据题意,函数f(x)是定义在R上的偶函数,则有f(-x)=f(x),又f(x-1)是奇函数,则f(-x-1)=-f(x-1),所以f(x+2)=f[-(x+2)]=f[-(x+1)-1]=-f[(x+1)-1]=-f(x),即f(x+2)=-f(x),则有f(x+4)=-f(x+2)=f(x),所以函数f(x)是周期为4的周期函数,则,,故故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3(2)单调递减区间为;对称中心.【解题分析】(1)先对化简,根据最大值求m;(2)利用整体代入法求单调递减区间和对称中心.【小问1详解】,由,所以在区间上的最大值为2+m+1=6,解得m=3.【小问2详解】由(1)知,.将函数的图象上所有点的横坐标缩短到原来的(纵坐标不变)得到.要求函数的单调递减区间,只需,解得.所以的单调递减区间为要求函数的对称中心,只需,解得.所以的对称中心为.18、(1)见解析(2)见解析【解题分析】(1)欲证CD⊥平面A1ABB1,可先证平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,满足根据面面垂直的性质;(2)欲证AC1∥平面CDB1,根据直线与平面平行的判定定理可知只需证AC1与平面CDB1内一直线平行,连接BC1,设BC1与B1C的交点为E,连接DE.根据中位线可知DE∥AC1,DE⊂平面CDB1,AC1⊄平面CDB1,满足定理所需条件【题目详解】(1)证明:∵ABC-A1B1C1是直三棱柱,∴平面ABC⊥平面A1ABB1∵AC=BC,点D是AB的中点,∴CD⊥AB,面ABC∩面A1ABB1=AB∴CD⊥平面A1ABB1(2)证明:连接BC1,设BC1与B1C的交点为E,连接DE∵D是AB的中点,E是BC1的中点,∴DE∥AC1.∵DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【题目点拨】本题考查直线与平面平行的判定,直线与平面垂直的判定,考查学生空间想象能力,逻辑思维能力,是中档题19、(1);(2)【解题分析】(1)利用换底公式及对数运算公式化简;(2)利用指数运算公式化简求值.【题目详解】(1);(2).20、(1)见详解;(2)见详解;(3)【解题分析】(1)证明∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF,又BC∩BF=B,∴AE⊥平面BCE.(2)证明由题意可得G是AC的中点,连结FG,∵BF⊥平面ACE,∴CE⊥BF.而BC=BE,∴F是EC的中点,在△AEC中,FG∥AE,∴AE∥平面B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州汽车工程职业学院《大数据分析与内存计算》2023-2024学年第一学期期末试卷
- 2025年人教A版七年级科学上册阶段测试试卷
- 2024年版跨国工作人员劳务协议条款版
- 小学数学教育中的学生能力培养
- 2025年中国强直性脊柱炎治疗药物行业市场发展前景研究报告-智研咨询发布
- 天津职业技术师范大学《电气安全工程》2023-2024学年第一学期期末试卷
- 幼儿音乐主题活动策划方案五篇
- 幼儿行为观察活动方案五篇
- 内蒙古化工职业学院《大学英语BⅠ》2023-2024学年第一学期期末试卷
- 闽江学院《药剂车间及专用设备》2023-2024学年第一学期期末试卷
- 2025北京丰台初二(上)期末数学真题试卷(含答案解析)
- 四川省2024年中考数学试卷十七套合卷【附答案】
- 生产车间5s管理培训课件
- 监考要求、操作流程及指导语
- 腰椎骨折病人的护理ppt
- 标准内包骨架油封规格及公差
- 2021年上海市初中学生化学竞赛(第二十八届天原杯)复赛试题及答
- 歌曲作品委托演唱创作合同 模板
- CAMDS操作方法及使用技巧
- 浅谈如何上好试卷讲评课
- 股票买卖绝招之高开假阴线攻击日选股公式
评论
0/150
提交评论