版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届忻州市第一中学高一上数学期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.有一组实验数据如下现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最佳的一个是()A. B.C. D.2.某集团校为调查学生对学校“延时服务”的满意率,想从全市3个分校区按学生数用分层随机抽样的方法抽取一个容量为的样本.已知3个校区学生数之比为,如果最多的一个校区抽出的个体数是60,那么这个样本的容量为()A. B.C. D.3.已知,函数在上递减,则的取值范围为()A. B.C. D.4.由直线上的点向圆作切线,则切线长的最小值为()A.1 B.C. D.35.函数f(x)=-x+tanx(<x<)的图象大致为()A. B.C. D.6.已知角的终边过点,则等于()A.2 B.C. D.7.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天8.表示不超过x的最大整数,例如,,,.若是函数的零点,则()A.1 B.2C.3 D.49.函数的单调减区间为()A. B.C. D.10.如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角,使得∠B′AC=60°.那么这个二面角大小是()A.30° B.60°C.90° D.120°二、填空题:本大题共6小题,每小题5分,共30分。11.如果函数满足在集合上的值域仍是集合,则把函数称为H函数.例如:就是H函数.下列函数:①;②;③;④中,______是H函数(只需填写编号)(注:“”表示不超过x的最大整数)12.函数,则________13.已知角的终边上有一点,则________.14.已知,则的值为___________.15.设平面向量,,则__________.若与的夹角为钝角,则的取值范围是__________16.函数在上的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于的函数.(1)若函数是偶函数,求实数的值;(2)当时,对任意,记的最小值为,的最大值为,且,求实数的值.18.我国是世界上人口最多的国家,1982年十二大,计划生育被确定为基本国策.实行计划生育,严格控制人口增长,坚持少生优生,这是直接关系到人民生活水平的进一步提高,也是造福子孙后代的百年大计.(1)据统计1995年底,我国人口总数约12亿,如果人口的自然年增长率控制在1%,到2020年底我国人口总数大约为多少亿(精确到亿);(2)当前,我国人口发展已经出现转折性变化,2015年10月26日至10月29日召开的党的十八届五中全会决定,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动.这是继2013年,十八届三中全会决定启动实施“单独二孩”政策之后的又一次人口政策调整.据统计2015年中国人口实际数量大约14亿,若实行全面两孩政策后,预计人口年增长率实际可达1%,那么需经过多少年我国人口可达16亿.(参考数字:,,,)19.如图,在四棱锥中,,,,分别为棱,的中点,,,且.(1)证明:平面平面.(2)若四棱锥的高为3,求该四棱锥的体积.20.某校高一(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是元,经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成:一部分是购买纯净水的费用,另一部分是其他费用780元,其中纯净水的销售价(元/桶)与年购买总量(桶)之间满足如图所示的关系.(Ⅰ)求与的函数关系;(Ⅱ)当为120时,若该班每年需要纯净水380桶,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料相比,哪一种花钱更少?21.已知函数.(1)判断并证明的奇偶性;(2)若,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】选代入四个选项的解析式中选取所得的最接近的解析式即可.【题目详解】对于选项A:当时,,与相差较多,当时,,与相差较多,故选项A不正确;对于选项B:当时,,与相差较多,当时,,与相差较多,故选项B不正确;对于选项C:当时,,当时,,故选项C正确;对于选项D:当时,,与相差较多,当时,,与相差较多,故选项D不正确;故选:C.2、B【解题分析】利用分层抽样比求解.【题目详解】因为样本容量为,且3个校区学生数之比为,最多的一个校区抽出的个体数是60,所以,解得,故选:B3、B【解题分析】求出f(x)的单调减区间A,令(,π)⊆A,解出ω的范围【题目详解】解:f(x)sin(ωx),令,解得x,k∈Z∵函数f(x)sin(ωx)(ω>0)在(,π)上单调递减,∴,解得ω2k,k∈Z∴当k=0时,ω故选:B【题目点拨】本题考查了三角函数的单调性与单调区间,考查转化能力与计算能力,属于基础题4、B【解题分析】先求圆心到直线的距离,此时切线长最小,由勾股定理不难求解切线长的最小值【题目详解】切线长的最小值是当直线上的点与圆心距离最小时取得,圆心到直线的距离为,圆的半径为1,故切线长的最小值为,故选:B【题目点拨】本题考查圆的切线方程,点到直线的距离,是基础题5、D【解题分析】利用函数的奇偶性排除部分选项,再利用特殊值判断.【题目详解】因为,所以是奇函数,排除BC,又因为,排除A,故选:D6、B【解题分析】由正切函数的定义计算【题目详解】由题意故选:B7、B【解题分析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【题目详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【题目点拨】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.8、B【解题分析】利用零点存在性定理判断的范围,从而求得.【题目详解】在上递增,,所以,所以.故选:B9、A【解题分析】先求得函数的定义域,利用二次函数的性质求得函数的单调区间,结合复合函数单调性的判定方法,即可求解.【题目详解】由不等式,即,解得,即函数的定义域为,令,可得其图象开口向下,对称轴的方程为,当时,函数单调递增,又由函数在定义域上为单调递减函数,结合复合函数的单调性的判定方法,可得函数的单调减区间为.故选:A.10、C【解题分析】根据折的过程中不变的角的大小、结合二面角的定义进行判断即可.【题目详解】因为AD是等腰直角△ABC斜边BC上的高,所以,因此是二面角的平面角,∠B′AC=60°.所以是等边三角形,因此,在中.故选:C【题目点拨】本题考查了二面角的判断,考查了数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、③④【解题分析】根据新定义进行判断.【题目详解】根据定义可以判断①②在集合上的值域不是集合,显然不是H函数.③④是H函数.③是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足是H函数.④是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足H函数.故答案为:③④12、【解题分析】利用函数的解析式可计算得出的值.【题目详解】由已知条件可得.故答案为:.13、【解题分析】直接根据任意角的三角函数的定义计算可得;【题目详解】解:因为角的终边上有一点,则所以,所以故答案为:【题目点拨】考查任意角三角函数的定义的应用,考查计算能力,属于基础题14、##【解题分析】根据给定条件结合二倍角的正切公式计算作答.【题目详解】因,则,所以的值为.故答案为:15、①.②.【解题分析】(1)由题意得(2)∵与的夹角为钝角,∴,解得又当时,向量,共线反向,满足,但此时向量的夹角不是钝角,故不合题意综上的取值范围是答案:;16、【解题分析】正切函数在给定定义域内单调递增,则函数的最小值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用偶函数定义求出实数的值;(2)函数在上单调递减,明确函数的最值,得到实数的方程,解出实数的值.试题解析:(1)因为函数是偶函数,所以,即,所以.(2)当时,函数在上单调递减,所以,,又,所以,即,解得(舍),所以.18、(1)15;(2)14年.【解题分析】(1)先判定到2020年底历经的总年数,再利用增长率列式计算即可;(2)设经过x年达16亿,列关系,解不等式即得结果.【题目详解】解:(1)由1995年底到2020年底,经过25年,由题知,到2020年底我国人口总数大约为(亿);(2)设需要经过x年我国人口可达16亿,由题知,两边取对数得,,即有,则需要经过14年我国人口可达16亿.19、(1)见解析(2)9【解题分析】(1)根据,可知,由可证明,又根据中位线可证明即可由平面与平面平行的判定定理证明平面平面.(2)利用勾股定理,求得.底面为直角梯形,求得底面积后即可由四棱锥的体积公式求得解.【题目详解】(1)证明:因为为的中点,且,所以.因为,所以,所以四边形为平行四边形,所以.在中,因为,分别为,的中点,所以,因为,,所以平面平面.(2)因为,所以,又,所以.所以四边形的面积为,故四棱锥的体积为.【题目点拨】本题考查了平面与平面平行的判定,四棱锥体积的求法,属于基础题.20、(Ⅰ);(Ⅱ)该班学生集体改饮桶装纯净水花钱更少.【解题分析】(Ⅰ)根据题意设出直线方程,再代入图示数据,即可得出与的函数关系;(Ⅱ)分别求出两种情形下的年花费费用,进行比较即可.【题目详解】(Ⅰ)根据题意,可设,时,;时,,,解得,所以与的函数关系为:;(Ⅱ)该班学生购买饮料的年费用为(元),由(Ⅰ)知,当时,,故该班学生购买纯净水的年费用为:(元),比购买饮料花费少,故该班
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版智能家居窗帘控制系统采购合同2篇
- 二零二四年度新能源材料企业代理记账与研发投入核算合同3篇
- 二零二四年度医疗器械临床试验合同范本3篇
- 2025年度模特形象代言效果反馈及调整合同4篇
- 2025年度猪场养殖废弃物处理项目投资合同4篇
- 2025年度生物医药生产厂房房屋买卖合同范本(生产设备配套)4篇
- 个人购销二零二四年度新款智能手机销售合同3篇
- 食品行业合同审核流程与标准化
- 山地车租赁合同
- 压力容器安装合同
- 反骚扰政策程序
- 运动技能学习与控制课件第十一章运动技能的练习
- 射频在疼痛治疗中的应用
- 四年级数学竖式计算100道文档
- “新零售”模式下生鲜电商的营销策略研究-以盒马鲜生为例
- 项痹病辨证施护
- 职业安全健康工作总结(2篇)
- 怀化市数字经济产业发展概况及未来投资可行性研究报告
- 07FD02 防空地下室电气设备安装
- 教师高中化学大单元教学培训心得体会
- 弹簧分离问题经典题目
评论
0/150
提交评论